
Evaluating IP Security and

Mobility on Lightweight Hardware

Licentiate Thesis

Andrey Khurri

Supervisor: Professor Antti Ylä-Jääski

Instructor: Adjunct Professor Andrei Gurtov

Evaluators: Dr. Bengt Ahlgren and Professor Klaus Wehrle

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Computer Science and Engineering

ii

AB
ABSTRACT OF LICENTIATE THESIS HELSINKI UNIVERSITY OF TECHNOLOGY

P. O. BOX 1000, FI-02015 TKK

http://www.tkk.fi

Author Andrey Khurri

Name of the thesis

Manuscript submitted 22.05.2009 Manuscript revised 23.08.2009

Date of the presentation 03.06.2009

Article dissertation (summary + original articles)Monograph

Faculty
Department
Field of research
Evaluator (s)
Supervisor
Instructor

Abstract

Keywords IP, security, mobility, performance, lightweight hardware

ISBN (printed)

ISBN (pdf)

Language English

ISSN (printed)

ISSN (pdf)

Number of pages 20 + 96 p.

Publisher

Print distribution

The thesis can be read at http://lib.tkk.fi/Diss

Evaluating IP Security and Mobility on Lightweight Hardware

X

Faculty of Information and Natural Sciences
Department of Computer Science and Engineering
Telecommunications Software
Dr. Bengt Ahlgren and Professor Klaus Wehrle
Professor Antti Ylä-Jääski
Adjunct Professor Andrei Gurtov

This work presents an empirical evaluation of applicability of selected existing IP security and mobility
mechanisms to lightweight mobile devices and network components with limited resources and capabilities.
In particular, we consider the Host Identity Protocol (HIP), recently specified by the IETF for achieving
authentication, secure mobility and multihoming, data protection and prevention of several types of attacks.
HIP uses the Diffie-Hellman protocol to establish a shared secret for two hosts, digital signatures to provide
integrity of control plane and IPsec ESP encryption to protect user data. These computationally expensive
operations might easily stress CPU, memory and battery resources of a lightweight client, as well as
negatively affect data throughput and latency.

We describe our porting experience with HIP on an embedded Linux PDA, a Symbian-based smartphone
and two OpenWrt Wi-Fi access routers, thereby contributingto the protocol deployment. We present a set of
measurement results of different HIP operations on these devices and evaluate the impact of public-key
cryptography on the processor load, memory usage and battery lifetime, as well as the influence of the IPsec
encryption on Round-Trip Time and TCP throughput. In addition, we assess how the lightweight hardware
of a mobile handheld or a Wi-Fi access router in turn affects the duration of certain protocol operations
including HIP base exchange, HIP mobility update, puzzle solving procedure and generation of an
asymmetric key pair. After analyzing the empirical resultswe make conclusions and recommendations on
applicability of unmodified HIP and IPsec to resource-constrained mobile devices. We also survey related
work and draw parallels with our own research results.

Acknowledgements

This thesis is the result of my three-year work at Helsinki Institute for Information

Technology and postgraduate studies at Helsinki University of Technology. The work

presents accumulated research on evaluating applicability of existing IP security and

mobility mechanisms to resource-constrained mobile devices, such as a Linux-based

Nokia Internet Tablet, a Symbian-based smartphone and a Wi-Fi access router

running OpenWrt.

The results and findings presented in this thesis are partly an outcome of our joint

work with several people at HIIT, TKK and partner organizations. Without you it

would have been hard to achieve many goals. I would like to express my deepest

gratitude to my supervisor Prof. Antti Ylä-Jääski and my instructor Adj. Prof.

Dr. Andrei Gurtov. Andrei originally invited me to work at HIIT, motivated me

to eventually start my postgraduate studies and supported me all along this thorny

path. Thank you, Andrei, for giving me this opportunity, for your valuable feedback

and support. I am very grateful to Prof. Antti Ylä-Jääski from TKK for supervising

this thesis, providing useful advice, comments and specific guidelines concerning

my postgraduate study. Thank you, Antti, for your assistance and always being

supportive.

The work has been done within two projects, MERCoNe (Multiaccess Experimenta-

tion in Real Converging Networks, 2006-2008) and WISEciti (Wireless Community

Services for Mobile Citizens, 2008-2010). I would like to thank the funding orga-

nizations of these projects including TEKES and several industrial partners. My

particular thank-you goes to all the individual researchers working with whom in

both projects has been a great and invaluable experience. I am grateful to our inter-

national partners from the Distributed Systems Group at RWTH Aachen University

with whom we have had several fruitful discussions and points of collaboration. My

special word of thanks is to Tobias Heer, Klaus Wehrle and René Hummen.

I wish to personally thank numerous researchers from the Networking Research

Group at HIIT who have generously spared their time to help me in understand-

ing and resolving non-trivial issues, discussing research (and not only) ideas and

debugging the code. Miika Komu, Andrey Lukyanenko, Dmitriy Kuptsov, Boris

Nechaev, Kristiina Karvonen, Joakim Koskela, Oleg Ponomarev, Samu Varjonen,

Juho Heikkila, Theofanis Kilinkaridis and Tatiana Polishchuk, my sincere thanks go

to all of you. Besides, I would like to thank the rest of my colleagues from HIIT,

especially those whom I do not mention explicitly here. Working with you has been

v

vi

a great pleasure. Prof. Martti Mäntylä and Dr. Pekka Nikander are the ones who

were the source of inspiration during our rare but fruitful meetings. Thank you

Pirkko, Päivi, Assel, Tuomo and Andrea for your continuous assistance with all

administrative tasks, for your smiles and positive mood.

I am thankful to all of my friends in Finland and in Russia for being generally

curious about my work and studies. Your questions to me have often been a chance

to evaluate the essence of my research activities from another perspective. Thank

you for your constant friendship.

My parents, Nadezda and Alexander, and my sister, Natalia, though remotely, have

always been with me supporting each of my steps throughout these days in Finland.

I am grateful to you for growing me up, for your endless parental care, your love and

generous help. Thank you for supporting and encouraging me in all my activities.

I owe you a lot.

Finally, I devote most of my thanks, words of appreciation and love to one particular

person, Ekaterina. You have become the closest and the dearest person to me.

Thank you infinitely for your true love and tender care. I am very happy with you.

Espoo, May 2009

Contents

Acknowledgements v

Contents vii

List of Abbreviations xi

List of Figures xv

List of Tables xvii

Author’s contribution xix

1 Introduction 1

1.1 IP technology goes embedded . 1

1.2 TCP/IP challenges on lightweight mobile devices 2

1.3 Thesis contribution . 2

1.4 Thesis structure . 4

2 Background 5

2.1 IP security . 5

2.1.1 Symmetric cryptography . 5

2.1.2 Public-key cryptography . 6

2.1.3 Elliptic Curve Cryptography 7

2.2 IP mobility . 9

2.2.1 Mobility types . 10

2.2.2 Handover types . 10

2.2.3 Mobility at different layers 11

2.3 Host Identity Protocol . 11

2.3.1 HIP architecture . 11

2.3.2 Base exchange . 12

2.3.3 Mobility and multihoming 13

2.4 Symbian OS networking architecture 14

3 Related Work 16

3.1 Studies on IP security . 16

3.1.1 Elliptic Curve Cryptography 16

3.1.2 Symmetric versus public-key cryptography 17

vii

viii

3.1.3 LHIP . 18

3.1.4 IKE and MOBIKE . 19

3.2 Research on IP mobility . 19

3.2.1 Mobile IP and HIP . 20

3.2.2 Multilayered mobility management 22

3.2.3 SHIM6 . 23

3.3 HIP performance evaluation . 24

3.4 Security and mobility issues in wireless networks 25

4 Research Problem 27

4.1 Security perspective . 27

4.2 Mobility perspective . 27

4.3 Energy perspective . 28

5 Methodology 30

5.1 Research methods . 30

5.2 Research tools . 30

5.2.1 Development environment 30

5.2.2 Experiment setup . 31

5.2.3 Measurement tools . 31

5.3 Limitations and assumptions . 32

6 Performance of Host Identity Protocol on Nokia Internet Tablets 33

6.1 HIP on the Nokia Internet Tablet 33

6.2 Test environment . 34

6.3 Experiment results on Nokia 770 35

6.3.1 Duration of a HIP base exchange 35

6.3.2 Puzzle difficulty . 38

6.3.3 Diffie-Hellman . 40

6.3.4 Round Trip Time . 41

6.3.5 Throughput . 43

6.3.6 Duration of a mobility update 45

6.3.7 Power consumption . 47

6.4 Summary of the results . 48

7 Performance of Host Identity Protocol on Symbian OS 50

7.1 Main porting stages to Symbian . 51

7.1.1 Development environment 51

7.1.2 Project preparation . 51

ix

7.1.3 Compilation . 52

7.1.4 Debugging . 52

7.1.5 Limitations of the prototypes 53

7.2 Our testbed . 54

7.3 Scenarios and tools . 55

7.4 Performance evaluation . 55

7.4.1 HIP base exchange duration 56

7.4.2 Asymmetric key pair creation 57

7.4.3 CPU load . 58

7.4.4 RAM usage . 59

7.4.5 Power consumption . 61

7.5 Summary of the results . 62

8 Security and Mobility in Wireless LANs 64

8.1 Motivation . 65

8.2 Distributed authentication architecture 66

8.2.1 Architectural components and principles 66

8.2.2 Synchronization of firewalls 68

8.2.3 Rule management . 69

8.2.4 Service subscription . 70

8.2.5 Compatibility with legacy clients 70

8.3 Experimental testbed . 71

8.3.1 Porting HIPL to OpenWrt 71

8.3.2 Experimental setup . 72

8.3.3 Considerations for deployment 72

8.3.4 Deployment status in panOULU 73

8.4 Performance evaluation . 74

8.4.1 Firewall mode . 74

8.4.2 Proxy mode . 75

8.4.3 Mode selection . 77

8.5 Summary . 77

9 Discussion 79

9.1 HIP applicability to lightweight devices 79

9.2 Future research directions . 82

10 Conclusions 85

References 86

x

List of Abbreviations

ACL Access Control List

AES Advanced Encryption Standard

AH Authentication Header

AR Access Router

API Application Programming Interface

ARP Address Resolution Protocol

BE Base Exchange

BEET Bound End-to-End Tunnel

BSD Berkeley Software Distribution

CA Certificate Authority

CBA Credit-Based Authorization

CPU Central Processing Unit

DH Diffie-Hellman

DHCP Dynamic Host Configuration Protocol

DHT Distributed Hash Table

DoS Denial of Service

DSA Digital Signature Algorithm

ESP Encapsulated Security Payload

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

GNU GNU is not Unix

GPRS General Packet Radio Service

GUI Graphical User Interface

xi

xii

HIP Host Identity Protocol

HIPD HIP Daemon

HIPL HIP for Linux

HIT Host Identity Tag

HMAC Hash Message Authentication Code

HTTP Hyper Text Transfer Protocol

IMEI International Mobile Equipment Identity

ICMP Internet Control Message Protocol

IP Internet Protocol

IPsec IP security

ID Identifier

IEEE Institute of Electrical and Electronics Engineers

IPR Intellectual Property Rights

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IPv6 Internet Protocol version 6

IRTF Internet Research Task Force

LAN Local Area Network

LHIP Lightweight HIP

MIP Mobile IP

MOBIKE Mobile Key Exchange

MR Mobile Router

NAT Network Address Translator

NEMO Network Mobility

OS Operating System

xiii

OSI Open Systems Interconnection

OSS Open Source Software

P2P Peer-to-peer

PC Personal Computer

PDA Personal Digital Assistant

PISA P2P Internet Sharing Architecture

POSIX Portable Operating System Interface

QoS Quality of Service

RFC Request for Comments

RFID Radio-frequency Identification

RSA Rivest-Shamir-Adleman algorithm

RTT Round-Trip Time

SA Security Association

SADB Security Association Database

SIP Session Initiation Protocol

SPI Security Parameter Index

SSH Secure Shell

SDK Software Development Kit

TCP Transmission Control Protocol

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunication System

URI Universal Resource Identifier

VoIP Voice over IP

VPN Virtual Private Network

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

WPA Wi-Fi Protected Access

xiv

List of Figures

2.1 HIP architecture. 13

2.2 HIP mobility update. 14

3.1 SHIM6 and HIP layers in the protocol stack. 23

5.1 General view of the network setup. 32

6.1 Test network with Nokia 770. 35

6.2 Time spans measured on the Initiator and the Responder. 36

6.3 Duration of HIP base exchange stages for Tablet and Laptop. . . . 37

6.4 T2 processing time versus puzzle difficulty. 38

6.5 T2 processing time with different DH groups. 41

6.6 CDF for the RTT in the Tablet-to-PC scenario with IPsec. 43

6.7 TCP throughput in an open wireless network. 45

6.8 Duration of a HIP mobility update. 46

7.1 HIPL daemon initialization. CPU load on E51. 59

7.2 OpenHIP daemon initialization with BEX. RAM usage on E51. . . 60

7.3 HIPL daemon initialization. Power consumption on E51. 61

8.1 Open network access model. 66

8.2 Distributed authentication model. 67

8.3 CPU load in the firewall mode. 75

8.4 CPU load in the proxy mode. 76

xv

xvi

List of Tables

2.1 Comparable key sizes with different cryptosystems. Adapted from [13]. 8

6.1 Median and average T2 with standard deviations for varying puzzle

difficulty. 39

6.2 Median and average RTT with standard deviations for Tablet and

Laptop. 42

6.3 TCP throughput in different scenarios. 44

6.4 Power consumption by applications. 47

7.1 Technical specifications of tested phone models. 54

7.2 Base exchange duration with HIPL and OpenHIP. 56

7.3 Creation of a key pair of different size on the Nokia E51. 58

xvii

xviii

Author’s contribution

The results presented in this thesis have been published in three scientific articles [54,

53, 61]. This section identifies the author’s contribution in these research papers and

other relevant activities.

The article Performance of Host Identity Protocol on Lightweight Hardware1 [54]

was the first publication on evaluating feasibility of running IP-based security and

mobility solutions, such as HIP, on resource-constrained mobile devices. I ported

the existing HIPL implementation to Nokia 770 Internet Tablet, an embedded Linux

PDA. This task was followed by a set of extensive protocol and network measure-

ments performed jointly with Ekaterina Vorobyeva. The results were then analyzed

by all the co-authors. I wrote the majority of the manuscript parts including the

background chapter on HIP, the chapter describing the porting process, and the

chapter with measurement results and analysis. I participated in writing the intro-

duction and conclusion, as well as visualizing the results with the gnuplot tool. I

presented the final version of the article at the Second ACM/IEEE International

Workshop on Mobility in the Evolving Internet Architecture in Kyoto, Japan in

August 2007.

The article Performance of Host Identity Protocol on Symbian OS 2 [53] continued

addressing the same topic while focusing on another operating system and another

class of mobile devices. The paper described migration of two separate HIP im-

plementations, HIPL and OpenHIP, to Symbian OS and presented measurement

results conducted in a pilot network with Nokia E51 and N80 smartphones. It took

a big effort to eventually run the HIPL software (originally written for Linux) on a

Symbian device. With the help of two summer interns and the assistance of other

colleagues, I accomplished porting of the HIPL base protocol engine, though leaving

the IPsec support unimplemented for a number of reasons. Especially debugging

the protocol on the Nokia smartphones required considerable effort. The Open-

HIP implementation was ported and measured by Dmitriy Kuptsov. Together with

him, we performed HIP experimentations and collected measurement results that

were then analyzed by all the co-authors. I was the primary writer of the article’s

1A. Khurri, E. Vorobyeva, and A. Gurtov. 2007. Performance of Host Identity Protocol on
Lightweight Hardware. In: Proc. of the 2nd ACM/IEEE International Workshop on Mobility
in the Evolving Internet Architecture (MobiArch’07). ACM, New York, NY, USA. ISBN 978-1-
59593-784-8.

2A. Khurri, D. Kuptsov, and A. Gurtov. 2009. Performance of Host Identity Protocol on
Symbian OS. In: Proc. of the IEEE International Conference on Communications 2009 (ICC’09).
IEEE.

xix

xx

text except for few of its parts such as the OpenHIP description and the section

about RAM usage. I presented the article at the IEEE International Conference on

Communication in Dresden, Germany in June 2009.

In the article Distributed User Authentication in Wireless LANs3 [61] I contributed

to the architecture design, the experimental network setup and the analysis of the

measurement results on La Fonera FON2100 and Gateworks Avila GW2348-4 wire-

less ARs. I provided the graphs presenting two different authentication architec-

tures, as well as enhanced other figures illustrating measurement results. I actively

participated in the writing process by providing the whole background chapter on

HIP and the sections describing the experimental testbed and panOULU deploy-

ment. In addition, I reviewed the whole manuscript and contributed text to its

other parts.

3D. Kuptsov, A. Khurri, and A. Gurtov. 2009. Distributed User Authentication in Wireless
LANs. In: Proc. of the 10th IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM’09). IEEE.

1 Introduction

In this thesis we present an evaluation of applicability of existing IP security and

mobility mechanisms for lightweight mobile devices with limited resources and ca-

pabilities. The following sections introduce to the reader the nature of the research

problem, specify our contribution and describe the organization of the thesis.

1.1 IP technology goes embedded

Migration of mobile telecommunication systems to IP technology is a growing, well

recognized trend. The existing mobile devices such as PDAs and smartphones are

increasingly utilizing the TCP/IP communication stack to interconnect between

each other and transfer data. However, the traditional Internet has donated to its

mobile counterpart not only a set of technologies but also a number of research issues

associated with the efficient use of these technologies. Moreover, the scale of the

problems in the new wireless and mobile environment, which has different properties

and requirements, has dramatically increased. In particular, such environment,

compared to wired and stationary communications systems, is a) more prone to

the attacks and b) requires that terminals are mobile. This in turn denotes two

main essential attributes for a device operating in the mobile Internet: security and

mobility, or secure mobility.

A natural way to address these issues would be to borrow the existing solutions that

have proved to work on conventional computers. As an example, there are several

projects that successfully miniaturized the TCP/IP stack and made it perfectly

suited for the micro-systems with only few hundreds bytes of available RAM [19, 17].

However, these solutions have been so far concentrating on the communications

performance and general ability to run IP on tiny objects rather than on reliable

security and mobility support. Mobility has not been in focus during the design of

the original Internet, whereas modern network-layer security mechanisms often rely

on cryptography, which involves computationally-intensive operations that might

stress the resource-constrained devices.

Within the context of this thesis, we call “resource-constrained”, “limited”, “re-

stricted” or “lightweight” such communication devices that are mobile and battery-

powered and have limited computational resources compared to conventional laptops

and desktop computers. Such devices are PDAs, cellular phones, Internet tablets,

communicators etc. The target mobile devices in this work have the CPU clock

1

2

rate ranging from 220 to 369 MHz, the amount of RAM ranging from 64 to 96 MB

and the battery capacity ranging from 860 to 1500 mAh. As an additional class of

“lightweight” devices in this thesis, we experiment with small network components

such as Wi-Fi access routers with a 183-MHz CPU and 16 MB of RAM.

1.2 TCP/IP challenges on lightweight mobile devices

The TCP/IP communication stack provides full functionality for interconnecting

mobile devices and transferring data between them. However, initially constructed

for stationary computers several decades ago, today TCP/IP technologies have little

or no capabilities to cope with the new issues introduced by the mobile Internet and

the lightweight portable devices with limited hardware capabilities.

A well known problem with the existing TCP/IP stack running on mobile devices

is that being borrowed from the traditional stationary Internet it does not provide

means for seamless mobility when a client changes its network attachment point.

This results in broken connections, delays, and inability to deliver services to moving

entities.

Another crucial aspect of mobile devices is communication security, which is espe-

cially threatened in wireless networks vulnerable to a variety of attacks. Despite

of many proposed security mechanisms, it is not obvious how efficient they are on

lightweight mobile devices in the presence of limited computational and battery

resources.

1.3 Thesis contribution

Our key contribution in this thesis is the evaluation of the applicability of IP-based

security and mobility to lightweight mobile device such as cellular phones, Internet

tablets and Wi-Fi access routers. In other words, our goal is to assess how feasible

it is to run the existing security and mobility solutions on these classes of devices.

Our interest is especially generated by the use of cryptography that is often a major

part of security and mobility architecture intended to authenticate mobile Internet

hosts, protect communications between them, and defend from potential attacks.

Such operations, as encryption and public key signatures implemented in software,

are computationally-intensive and could stress CPU and battery resources of mobile

devices.

3

As a basis for our empirical evaluation we use the Host Identity Protocol (HIP),

which is an experimental secure mobility protocol specified by the IETF [71, 73,

47, 63, 62, 80, 79]. HIP can be fairly considered as a universal solution to many

Internet problems as it provides support of end-to-end security, resistance to CPU

and memory exhausting denial-of-service (DoS) attacks, NAT traversal, mobility

and multihoming. HIP uses the Diffie-Hellman protocol to create a session key for

two communicating hosts and IPsec encapsulation for data packets.

A good property of HIP from the research and experimentation perspective is that

it relies on public-key cryptography and IPsec. This makes HIP similar to other

security and mobility protocols and, thus, provides an opportunity to correlate mea-

surement results obtained in this work with other projects. On the other hand, as

HIP builds its operations on cryptographic identities, its integration with other se-

curity protocols becomes easier [29]. With all its advantages, HIP is a prospective

candidate to be an essential part of the future Internet architecture.

Although several previous projects evaluated HIP on standard Internet hosts [40,

38, 82, 48], none of the studies has targeted a HIP assessment on a mobile device

with restricted resources. In this work, we perform HIP measurements on real mo-

bile devices: Linux-based Internet tablets and Symbian-based smartphones. The

extensive analysis of the results allows us to provide a set of recommendations on

using unmodified HIP on lightweight clients in varying circumstances. Our expe-

rience with HIP reported in this thesis is of particular importance to the Internet

research community. This is because HIP is still an experimental protocol and for

large-scale deployment it needs more success stories and real-life pilot examples.

Another contribution of this work is a HIP-based distributed authentication archi-

tecture that addresses important security and mobility issues in wireless local area

networks. To validate our model we build a pilot WLAN with two models of Wi-Fi

access routers that have varying hardware resources. We evaluate performance of

selected public-key operations on these Wi-Fi access routers. This assessment al-

lows to determine a set of criteria for selecting equipment while deploying such an

architecture in different networks.

We further contribute to the security and mobility issues on lightweight devices by

surveying related work and drawing appropriate parallels with our own research

results.

As an additional contribution, we consider our first-hand knowledge about migration

of open source software (OSS) projects to mobile environment. In particular, we

report our porting experience of two different HIP implementations to Symbian

4

OS, as well as migration of HIPL to an embedded Linux OS and to the OpenWrt

platform.

1.4 Thesis structure

The structure of the thesis is organized as follows. In Chapter 2, we overview re-

lated technologies from the security and mobility fields. In addition, we present the

background on the Host Identity Protocol that has been the target of our empirical

research. Chapter 3 surveys the most interesting pieces of related work found in the

literature. Chapter 4 and Chapter 5 describe the nature of the research problem

and research methodology. In Chapter 6, we present performance evaluation of HIP

on Nokia 770 Internet Tablet. The chapter contains description of our port of HIPL

and protocol performance results on the mobile Internet tablet. In particular, our

measurements include data throughput, latency, and power consumption of a HIP

base exchange and a HIP mobility update. Chapter 7 describes our experience of

running HIP on Symbian OS and evaluates feasibility of running IP-based secu-

rity on lightweight cellular phones. We measure and analyze duration of the HIP

base exchange and its parts, CPU load, RAM utilization and power consumption of

several protocol operations on Nokia E51 and Nokia N80. The chapter elaborates

on the porting process of two HIP implementations, HIPL and OpenHIP, to Sym-

bian OS. Chapter 8 presents our authentication architecture in wireless LANs and

reports performance results of its components running on two Wi-Fi AR models,

La Fonera FON2100 and Gateworks Avila GW2348-4. We summarize the empirical

results, discuss the outcome of our research and highlight potential future research

directions in Chapter 9. Finally, Chapter 10 concludes the thesis.

2 Background

This chapter presents a brief overview of several related to our research concepts and

definitions from the IP security and mobility fields. It does not intend to provide

details but rather aims at helping the reader in understanding selected ideas, terms

and techniques.

2.1 IP security

The aim of IP security in general is to protect network-layer communications be-

tween the hosts in the Internet. The main components of IP security include authen-

tication, authorization, privacy, confidentiality, protection of data integrity, and pre-

vention of a variety of attacks by means of the different protocols and mechanisms.

In the following sections we give an overview of several security techniques, including

symmetric, public-key and elliptic curve cryptography. Cryptography mechanisms

in communications systems are used to ensure data integrity and confidentiality by

encrypting the messages sent over an insecure channel and to authenticate their

originator by signing the messages digitally. The encrypted pieces of the data are

usually referred to as ciphertext, whilst the algorithms to perform encryption and

decryption operations are known as ciphers. Ciphertexts themselves make little

sense to an entity that is not able to decrypt them and, therefore, are usually safe

to transmit them over an insecure network. Digital signatures, in turn, allow to

verify the authenticity of a message originator to its receivers [14, 16, 89, 93]. Be-

low we give a short overview of the most prominent cryptography algorithms and

protocols consolidated in three different groups, symmetric cryptography, public-key

cryptography and elliptic curve cryptography.

2.1.1 Symmetric cryptography

To perform encryption and decryption operations the sender and receiver of a mes-

sage have to employ a key. In symmetric cryptography, either this key is identical

for both encryption and decryption or derivation of one key from another is triv-

ial. Thus, for confidential communication, the symmetric key must not be revealed

to any third party. This makes the key management process very challenging. The

main questions are how to securely select a cryptographic key, how to distribute it to

both communicating parties and how to store the key safely on the hosts. However,

5

6

the complexity of managing the keys in symmetric cryptography is compensated by

relatively low computational cost comparing to other encryption algorithms such

as public-key cryptography. Two types of the ciphers utilized in symmetric cryp-

tography are stream and block ciphers. Stream ciphers encrypt bits of a message

one by one, whereas block ciphers divide the message on blocks of different size and

operate on them [14]. Examples of the most known block cipher methods used with

symmetric cryptography are DES (Data Encryption Standard) [74], AES (Advance

Encryption Standard) [76], and Blowfish [91].

2.1.2 Public-key cryptography

Public-key cryptography also known as asymmetric cryptography uses an approach

different from symmetric cryptography. The key idea is built around a pair of the

keys, public and private, that complement each other and are generated together

on a host. The public key is open to anyone and is distributed among the host’s

peers. The peers that want to communicate with the host use its public key to

encrypt the messages. These messages can only be decrypted using the correspond-

ing private key of a public-private key pair. Since the private key is kept secretly

on the host possessing it, asymmetric cryptography provides high level of commu-

nication security and data protection. One of the main properties of asymmetric

cryptography is that the private key cannot be practically derived from its public

counterpart [16, 89].

Public-key cryptography allows not only to preserve communication privacy between

a host and its peers by making it impossible to read transferred information by the

third parties but can also be used to digitally sign messages. A public-key signature

tightly binds a message with its originator and proves that a particular message has

been signed by a particular host. Having signed a message its sender cannot repu-

diate its actions, i.e. refuse its involvement in creating the message. Practically this

means that after the message had been signed the host cannot change the message

content without modifying its signature and vice versa [89]. A downside of public

key cryptography is that the algorithms it uses operate on large numbers, involve

heavy mathematical calculations and, thus, produce significant cost to communi-

cating hosts. This limits the applicability of the public-key algorithms, especially

in cases when one or more of the communicating parties is a lightweight mobile

host with constrained hardware resources. In practise, asymmetric and symmetric

cryptography algorithms are often utilized jointly. First, public key cryptography

is used to securely establish a shared secret between two hosts. Then, the hosts

7

can employ this shared secret in symmetric cryptography algorithms that are more

efficient computationally [14].

RSA

RSA algorithm [89] received its name from the initial letters of surnames of its

original inventors, Rivest, Shamir and Adleman. In 1978 they published an encryp-

tion method to achieve privacy and authentication in electronic communications

systems, which later had become one of the commonly used cipher methods in

public-key cryptography. With this method, constructed on the complexity of fac-

toring large prime numbers, it is computationally difficult to derive the private part

of a public-private key pair by knowing its public component. Thus, it becomes

possible to eliminate the secrecy of the public key while distributing it over an in-

secure channel. Encryption of the messages with the public key of a host allows

to protect integrity of transmitted data (that may include symmetric keys as well),

while signing the messages with the private key authenticates the host to its peers.

More details about the RSA algorithm can be found in [89].

DSA

DSA is an acronym for Digital Signature Algorithm, which is a standard published

by the US National Institute of Standards and Technology (NIST) in 2000. As the

name suggests, DSA can be used to digitally sign messages whilst it cannot be used

to perform data encryption. The full standard specification can be found in [75].

Diffie-Hellman

Diffie-Hellman (DH) [16] is a key exchange protocol introduced by Whitfield Diffie

and Martin E. Hellman in 1976. The protocol is an example of the common use of

the public-key and symmetric cryptography algorithms to solve the key distribution

problem in the cryptosystems. The DH protocol can be used together with RSA

and DSA algorithms to securely exchange the keys of two communicating hosts and

eventually generate a pairwise secret. This secret is subsequently used to derive a

common session key used in actual data communication between these hosts [16].

8

Table 2.1: Comparable key sizes with different cryptosystems. Adapted from [13].

Symmetric ECC DSA/RSA “Best Before”

80 160 1024 2010

112 224 2048 2030

128 256 3072 2040

192 384 7680 2080

256 512 15360 2120

2.1.3 Elliptic Curve Cryptography

An approach to use elliptic curves in cryptography as an alternative to the existing

public-key algorithms (in particular, the Diffie-Hellman protocol) has been proposed

by Victor Miller in 1985 [70]. The main author’s emphasis was that Elliptic Curve

Cryptography (ECC) could achieve more efficient computation comparing to the

DH protocol. Neal Koblitz is another famous scientist well known for his valuable

contribution to the ECC field (e.g., [55, 56]). Along with Miller, he is referred to as

one of the ECC’s originators. The strength of the ECC idea lies on the elliptic curve

discrete logarithm problem (ECDLP), which in this case is much harder to solve

computationally than with the ECC’s counterparts. Largely for this reason, ECC is

often being called as a “new generation” of public-key cryptography. Although with

present requirements to security levels it does not bring much efficiency comparing

to the “mainstream” algorithms such as DH or RSA, ECC is believed to provide

significant benefits for future communications systems when the security threats

will be multiplied from their current level. One particular advantage of ECC is that

it requires notably shorter key length than RSA and DH while claiming to preserve

an equivalent security level (see Table 2.1). In other words, computation cost per

bit is rapidly decreasing for ECC with increasing the public key length. Presently

used RSA/DSA cryptosystems still often employ the key length of 1024 bits, which

is considered to remain “unbreakable” until 2010 [13].

Looking at the current ECC implementation and deployment status one can ob-

serve serious implications. The biggest obstacle is that the majority of ECC-related

techniques and aspects have been patented by numerous individuals and companies,

9

which substantially differentiates ECC from the rest of the cryptography methods.

One notable player in this area is a Canadian company Certicom that holds over

100 patents concerned to ECC and public-key cryptography in general [77]. Ac-

cording to Certicom web site4, since the introduction of ECC in 1985 the company

has been continuously seeking to develop an efficient implementation of ECC and

break a common belief in its relative slowness. As a result, Certicom has deliv-

ered a commercial ECC toolkit that can be used in numerous applications. Other

interesting initiatives of Certicom include sponsoring of the Center for Advanced

Cryptographic Research (CACR) at the University of Waterloo along with several

annual ECC scientific venues for the world’s key cryptographers and organizing

since 1997 the Certicom ECC Challenge5, which gives practically to anyone an op-

portunity to solve the ECDLP at its current level. Participants of the challenge

are supposed to derive the ECC private keys based on the list of the public keys

and other known parameters. As of now, the highest solved challenges are 109-bit.

The 131-bit challenge requires much more resources to be solved whereas higher

challenges (starting from 163-bit) are treated as computationally infeasible.

Besides mentioned activities, Certicom has formed the Standards for Efficient Cryp-

tography Group (SECG)6 that combines core providers of cryptography solutions

seeking for interoperability between them. Among other, the SECG has been pro-

ducing a number of ECC standards and documents including“SEC 1: Elliptic Curve

Cryptography” [13] and “SEC 2: Recommended Elliptic Curve Domain Parame-

ters” [12]. Despite of complex IPR issues around ECC, several countries around the

world are adopting an extent of it via licensing. For instance, the National Security

Agency (NSA) has purchased from Certicom the rights to use a set of ECC tech-

niques under patents believing in their strong future potential. The US Department

of Defense (DoD) is targeting to replace around 1.3 million existing hardware devices

within a time frame of ten years. The goal is to ensure that future communication

systems will be capable of protecting sensitive information for the US government

and country [77]. Section 3.1 of this thesis surveys some relevant studies on ECC

security on mobile devices.

4http://www.certicom.com/index.php/ecc
5http://www.certicom.com/index.php/the-certicom-ecc-challenge
6http://www.secg.org

10

2.2 IP mobility

Mobility is one of the essential attributes of today’s Internet users and networks.

Especially, the owners of mobile lightweight devices, such as cell phones and laptops,

tend to change their geographical location that often causes changes of their network

attachment point and their IP addresses. Other possible scenarios include switching

application sessions between different hardware terminals and moving the whole

networks at once. Mobility in general can be classified into different types depending

on various factors, for example, which of the aforementioned changes are needed to

be sustained, or which layer of the OSI reference model is in focus. Most of the

authors working in the area of mobility distinguish between terminal, network, flow,

session, personal, and service mobility [59, 67, 92, 107].

2.2.1 Mobility types

Terminal or host mobility implies uninterrupted TCP/IP connections in the presence

of node mobility, i.e. upon changing its physical location and/or IP address [67, 92,

107]. Network mobility provides means to sustain moving of a complete network

with its mobile access router and maintain reachability to all of the mobile nodes

inside the network [15, 67, 107]. Flow mobility allows splitting parts of a connection

between distinct interfaces of a host, as well as switching a communication between

IPv4 and IPv6 protocols [107]. Session mobility denotes an ability to seamlessly

move versatile communication sessions from one terminal to another, e.g., from a

PDA to a PC, or from a laptop to a smartphone [92]. Personal mobility is defined

as a possibility to make the user reachable via a single user identity (e.g., an URI,

an IP address, a cryptographic key) on several physical appliances or several user

identities on a single device, either at the same time or alternatively [92]. Finally,

service mobility is referred to as a means to access personal user services in versatile

circumstances, including changes of client devices and network access providers [92].

2.2.2 Handover types

A comprehensive set of mobility related definitions can be found in [67]. For the

purpose of this thesis, in addition to the above mobility categories, it is necessary

to provide a general definition of a handover. A handover or a handoff is a process

of changing the network attachment point by a host, or an attempt to perform such

a change. The aim of the most IP mobility mechanisms is to provide functionality

that would allow to minimize session breaks and interruptions during a handoff [67].

11

When a change of the network attachment point is unnoticed by the user, the

respective handover is often referred to as seamless. Handovers might differ by the

scope (e.g., horizontal or vertical) and by the level of control (e.g., mobile-controlled

or network-controlled). Horizontal handoff defines the process of switching the

network attachment point of a mobile node between access points of the same type

(e.g., WLAN to WLAN). In contrast, during a vertical handover a mobile device

moves from one access network type to another, such as from WLAN to 3G. These

and other definitions of handoff types can be found in [67].

2.2.3 Mobility at different layers

Different aspects of mobility have been extensively studied to date resulting in a

wide range of mobility protocols and extensions that aim to operate on different,

from link to application, layers of the OSI reference model [10, 46, 57, 59, 79, 84,

88, 97, 106, 107]. Sometimes, the distinction of the mobility mechanisms between

different protocol stack layers is blurred. For instance, network (IP) layer mobility

can be made transparent to upper layers, whereas network-layer applications can be

assisted by application-layer mobility mechanisms. Resulting from this tendency, a

number of combined protocol schemes for multi-layered mobility management have

been proposed to date [95, 101, 102].

In this work, as the name suggests, we mostly consider IP-layer mobility that, in

terms of the presented definitions, best refers to terminal or host mobility. In

Chapter 3, we review related work in the area of IP mobility that has been following

different approaches including locator/identifier split. Section 2.3 below provides

background information on the Host Identity Protocol, which follows the latter

approach and has been the key technology in the experimental part of this thesis.

2.3 Host Identity Protocol

The existing Internet architecture that had been primarily designed for stationary

hosts nowadays faces many non-trivial challenges with the growing amount of mo-

bile terminals. Currently, there are two name spaces that are used globally by the

Internet services and applications, domain names and IP addresses. IP addresses

serve the dual role in the Internet being both end host identifiers and topological

locators. This general principle does not allow hosts to change their location with-

out breaking ongoing transport protocol connections that are strictly bound to IP

addresses.

12

2.3.1 HIP architecture

The Host Identity Protocol (HIP) [47, 62, 63, 71, 73, 79, 80] had been proposed

to overcome the above mentioned problem. The idea behind HIP is decoupling

of the network layer from the higher layers in the protocol stack architecture (see

Figure 2.1). HIP defines a new global name space, the Host Identity name space,

thereby splitting the double meaning of the IP addresses. When HIP is used, upper

layers do not any more rely on IP addresses as host names. Instead, Host Identifiers

are used in the transport protocol headers for identifying hosts and establishing

connections. IP addresses at the same time act purely as locators and are respon-

sible for routing packets towards the destination. A Host Identifier is a public key

of the host. For compatibility with IPv6 legacy applications and to ease protocol

implementations, a Host Identifier is further represented by a 128-bit long crypto-

graphic hash, the Host Identity Tag (HIT). Each HIP-enabled host has one or more

host identifiers that might be either public (available from a directory service) or

unpublished (local).

HIP offers several benefits including end-to-end security, resistance to CPU and

memory exhausting denial-of-service (DoS) attacks, NAT traversal, mobility and

multihoming support.

2.3.2 Base exchange

To start communicating through HIP, two entities must establish a HIP association.

This process is known as the HIP Base Exchange (BEX) [71, 73] and it consists of

four messages transferred between the initiator and the responder. After BEX is

successfully completed, both hosts are confident that private keys corresponding to

Host Identifiers (public keys) are indeed possessed by their peers. Another purpose

of the HIP base exchange is to create a pair of IPsec Encapsulated Security Payload

(ESP) Security Associations (SAs), one for each direction. All subsequent traffic

between communicating parts is protected by IPsec. A new IPsec ESP mode, Bound

End-to-end Tunnel (BEET) [81] is used in HIP. The main advantage of BEET mode

is low overhead in contrast to the regular tunnel mode.

Figure 2.1 illustrates the overall HIP architecture including the BEX. The initiator

can retrieve the HI/HIT of the responder from a DNS directory [80] by sending a

FQDN in a DNS query. Instead of resolving the FQDN to an IP address, the DNS

server replies with an HI (FQDN→HI). Transport layer creates a packet with the

HI as the destination point identifier. During the next step, HI is mapped to an

13

Figure 2.1: HIP architecture.

IP address by the HIP daemon on the Host Identity layer. Finally, the packet is

processed by the network layer and delivered to the responder. As a result, the

conventional 5-tuple socket becomes {protocol, source HI, source port, destination

HI, destination port}.

2.3.3 Mobility and multihoming

Since neither transport layer connections nor security associations (SAs) created

after the HIP base exchange are bound to IP addresses, a mobile client can change

its IP address (upon moving, due to a DHCP lease or IPv6 router advertisement) and

keep on transmitting ESP-protected packets to its peer. HIP supports such mobility

events by implementing an end-to-end signaling mechanism between communicating

nodes (see Figure 2.2) [79].

The purpose of the first UPDATE packet is to notify the peer of a new IP address and

ESP information associated with this address. The corresponding parameters are

called LOCATOR and ESP INFO. The message also contains a SEQ parameter (a

sequence number of the packet) and is therefore protected against possible losses by

retransmission. Upon receiving the UPDATE message, the peer host must validate

it, update any local HI↔IP mappings and assure that the mobile client is accessible

via the new link. This is accomplished by sending the second UPDATE packet back

to the mobile host at its new IP address containing an echo request along with the

14

Figure 2.2: HIP mobility update.

ESP INFO of the peer. Finally, the mobile client is expected to acknowledge the

message from its peer and return the content of the echo message. When the peer

host gets this response, the new IP address of the client is marked as verified and

the update procedure is completed [79].

In some cases a host might have more than one IP addresses associated with a

certain interface or even several interfaces attached to different access points. Such

host is often referred to as multihomed and is able to maintain multiple connections

over distinct paths. HIP provides an opportunity for a host to inform its peers

about available interfaces through the use of signalling messages described above.

The peer hosts update the appropriate HI↔IP bindings and verify each of the IP

addresses of the multihomed host by sending echo requests and waiting for correct

replies.

The base specification of HIP mobility and multihoming is presented in the

RFC 5206 [79]. Besides that, several extensions have been proposed over past years

in research to complement HIP with micromobility [84, 96, 108] and network mo-

bility [41, 85] support. Some of these studies are mentioned under related work in

Section 3.2.

15

2.4 Symbian OS networking architecture

A part of our research is devoted to performance evaluation of the Host Identity

Protocol on Symbian OS S60 smartphones. This section gives to the reader brief

details about Symbian networking architecture important from the perspective of

porting an open source software (OSS) to it.

Symbian OS networking architecture is dominantly based on the client-server com-

munication model. Applications written as clients usually connect to and exchange

data with particular servers (socket, telephony, serial communications, etc.). A

server then communicates with low-level entities such as logical and physical device

drivers (LDD and PDD) via an interface of server plug-in modules. Different mod-

ule types include CSY (serial communications server), TSY (telephony server), PRT

(socket server), and MTM (message type) modules. Clients do not directly access

the plug-in modules. The latter are instead loaded by the server on demand [24].

The socket server (ESOCK) is responsible for socket APIs on Symbian and provides

two types of interfaces: a BSD-like C socket API (based on Open C plug-in [27])

and an alternative Symbian-native C++ socket API. The socket server works with

PRT protocol modules that are supplied in a form of dynamic link libraries (DLLs)

with a .PRT extension. The TCPIP.PRT module comprises support of IPv4/v6,

ICMP, TCP and UDP, as well as DNS infrastructure [24].

Our HIP implementation for Symbian OS is entirely based on the Open C plug-in

that provides support of many standard C socket APIs. The Open C plug-in serves

as an interface between the HIP daemon application and the PRT protocol modules

in the Symbian networking stack.

3 Related Work

A number of studies evaluated different network-layer security and mobility mech-

anisms running on traditional computers [38, 48, 107]. Several research projects

studied security aspects of communications in sensor networks from the perspec-

tive of tiny participating nodes [31, 100]. Other studies were devoted to protection

of sensitive health care data being transferred between remote monitoring mobile

devices [66]. This section highlights interesting related research performed on IP

security and mobility, focusing on mobile lightweight devices.

3.1 Studies on IP security

In the following sections we survey several research studies that aimed at securing

IP layer communications of mobile devices by means of elliptic curve, symmetric

and asymmetric cryptography. We also give a word to some alternative approaches

such as those using hash chains and overview the Internet Key Exchange protocol.

3.1.1 Elliptic Curve Cryptography

Malhotra et al. [66] evaluated the use of Elliptic-Curve Cryptography (ECC) to pro-

tect sensitive health data in a patient monitoring system on a PDA. The authors

propose a secure protocol that aims at data encryption and user authentication.

According to theoretical background given by the authors, ECC has a great advan-

tage over RSA security algorithms because it consumes less memory and processing

time. As an example, a 1024-bits RSA key’s size would be equivalent to the size

of a 160-bits ECC key. This, in authors’ opinion emphasizes benefits of using ECC

on constrained mobile devices [66]. Unfortunately, besides referring to other studies

in the ECC field, the authors do not provide empirical comparison results between

ECC and public-key cryptography that would have been useful to evaluate different

schemes on lightweight devices. However, the article is valuable as it shows some

particular performance results of ECC on a PDA SPV M5000 running at 520 MHz

with 64 MB of RAM. Interestingly, even with such considerable hardware resources

for a mobile device, ECC encryption over WLAN and 3G produced notable latency

compared to plain data communications. As the results indicate, the total time to

communicate a small text message over the implemented ECC protocol varies from

8 seconds in WLAN to 11 seconds in 3G network. ECC signature verification takes

16

17

on the average 6-7 seconds of the total time. ECC security algorithm over WLAN in

this example study brings a 16-fold overhead comparing to non-ECC case (8 versus

0.5 seconds) [66].

3.1.2 Symmetric versus public-key cryptography

Continuing from the previous section on Elliptic Curve Cryptography, a work by

Wang et al. [100] presents a comparison between symmetric cryptography and ECC-

based public-key cryptography in sensors networks. The main objective of Wang

et al. in this study was to address important security aspects of large wireless sensor

networks with tiny sensor nodes, such as user authentication and data access control.

Namely, the authors aim at achieving protection from several attack types includ-

ing message eavesdropping, traffic monitoring, sensor compromising and flooding

attacks. They design a set of asymmetric and symmetric cryptography schemes

for establishing a shared key between communicating entities and compared them

on commercially available MICAz pairwise sensor motes. These devices include a

8-MHz CPU, 128K of flash memory and 4K of RAM. In the experiments the au-

thors evaluate a pairwise key establishment process and authentication of a mobile

user to a sensor mote from the perspectives of processing time, memory overhead,

the amount of transferred messages (message complexity) and energy consumption.

Based on the performance results obtained in several tests, Wang et al. conclude

that ECC-based public-key cryptography has more advantages over symmetric cryp-

tography in terms of message complexity, use of the memory and security [100].

A recent study by Haque et al. [31] introduces a public-key based mechanism to

protect node-to-node communications in wireless sensor networks. In particular, the

authors consider a healthcare system scenario where small sensors transmit sensitive

data between each other and to mobile terminals, with the help of a secure base

station. The presented approach comprises two components: a) a key negotiation

scheme to generate a shared secret between a sensor node and the secure base

station; b) a decryption key derivation mechanism used by a receiver node for each

particular sender. In this scheme, the secure base station serves as a key generation

and management entity. It first establishes a pairwise session key with the sender

of a message, which is used for message encryption, and then securely transmits a

correspondent decryption key for this message to the receiver. Based on simulation,

the authors compare their own proposed solution with two other security schemes

in terms of the energy consumed for communications, which is an important metric

in wireless sensor networks. The results indicate that the proposed architecture

18

shows better performance than one system, whereas consumes more energy than

another (10.1 mJ for sender and 5.7 mJ for receiver). However, the authors do not

show any estimates for key handshake (based on public-key cryptography) duration

between a sensor node and the base station. Although the system is presented as

a very scalable end-to-end security scheme, each sensor-to-sensor communication

requires establishing a secure context with the central base station, which produces

additional costs.

He and Zhang [32] propose a protocol for asymmetric authentication of end hosts,

one of which is a weak mobile client connected over the air to a wired service

provider in the Internet. The presented approach is based on delegating part of the

computationally expensive cryptographic operations from a mobile client to a third

party that is a representative of the mobile node in its home network. The design

allows to authenticate the mobile client and the service provider to each other via

a home network proxy, whilst not revealing the session key to the latter. While the

idea of using a home agent to achieve an extra functionality for mobile clients is

not novel, the protocol designed by He and Zhang deserves proper attention since

it addresses an essential property such as authentication. On the other hand, a

number of issues remain to be unclear, for instance, potential client movements and

mobility, and the overhead introduced by a home representative. In addition, the

authors mention that running asymmetric cryptography on lightweight devices is

expensive without providing any actual figures [32].

3.1.3 LHIP

Lightweight HIP or LHIP [33, 34] originally derived from the early thoughts on

computational complexity of public-key cryptography in HIP when used on resource-

constrained nodes. The motivation for this work was further reinforced later with

availability of the first empirical HIP measurement results on Nokia 770 Internet

Tablet [54]. In Lightweight HIP, Heer suggests a lightweight authentication exten-

sion for the Host Identity Protocol, which uses hash chains instead of computa-

tionally expensive asymmetric cryptography. LHIP achieves up to two orders of

magnitude reduction of HIP computational cost at the expense of public key au-

thentication, thereby making the protocol more suitable for mobile appliances with

low resource base [33, 34].

19

3.1.4 IKE and MOBIKE

Internet Key Exchange version 2 (IKEv2) protocol is standardized in RFC 4306 [50].

The purpose of IKE is to authenticate two communication entities to each other by

exchanging theirs keys and to create a pair of Security Associations (SAs) to be

used then with IPsec (IP security) ESP (Encapsulated Security Payload) and AH

(Authentication Header) protocols [51, 52]. In addition to general IKE specifications,

there has been a number of efforts on how to tailor it to particular needs of embedded

systems (e.g., a lightweight IKE) and mobile environments (e.g., MOBIKE). Lim

et al. [65] aim at integrating IP security into embedded network components, such as

routers. Based on IKEv1 standard, the authors design and implement a lightweight

IKE protocol extension that has a minimal set of standard RFC functions but is

interoperable with other IKE protocols and thus can be used to establish SAs with

different clients. However, since the IKEv1 has been enhanced and obsoleted by

the IKEv2, presented lightweight IKE extension needs to be reimplemented to be

compatible with the latest standards.

MOBIKE [86] is an extension to IKEv2 that provides mobility and multihoming

support so that established IKE SAs can be updated when the IP address of one

participating host changes. In the simple scenario this may happen due to terminal

movements and change of an access network. In a more sophisticated scenario

MOBIKE can support multihoming, i.e., the use of different network interfaces at

the same time, as well as IP interfamily (IPv4 and IPv6) handover. MOBIKE

does not support any rendezvous service and this prevents simultaneous IP address

change on both hosts. This is one important distinction that differentiates MOBIKE

from the Host Identity Protocol [73]. Nevertheless, IKE and HIP have much in

common. Both aim at establishing a secure communication context between two

hosts and generating keying material for subsequent use by IPsec. This generated

substantial interest in functionality comparison and evaluation of security level of

both protocols. Jian et al. propose to replace the HIP base exchange with an IKE

extension as a mechanism to eliminate some security risks [44].

3.2 Research on IP mobility

A number of previous research projects have studied mobility management issues in

next generation wireless networks. Nevertheless, to our best knowledge, there have

been little or no efforts to evaluate performance of different mobility mechanisms

running particularly on lightweight mobile devices taking into account their spe-

20

cific constraints and use cases. Such small appliances belong to a group of devices

that, due to their usage patterns, i.e., frequent movements, require strong mobil-

ity support. On the other hand, implementing secure mobility might easily stress

lightweight hardware. Our preliminary experiments with HIP mobility on Nokia 770

presented in Section 6.3.6 indicate that secure mobility produces certain costs to a

mobile handset in terms of computation time, as compared, for instance, with a

conventional laptop.

Thus, we believe that evaluating performance of different mobility extensions on

lightweight hardware is important as it would provide a good basis for choosing

the most appropriate mechanism for a particular type of device and/or application

under particular circumstances. In case of hybrid mobility management concepts

comprising multilayered techniques, it is important to balance computational load

on a mobile client and in general avoid potential overhead, which might derive

from cryptographic operations involved with signalling updates, such as in the Host

Identity Protocol.

3.2.1 Mobile IP and HIP

In this thesis, besides presenting our practical experience with HIP mobility, we find

it necessary to look at the related studies and overview some essential approaches

that make host mobility and multihoming possible. Mobile IP (MIP) [88] has been

around for a long time and, despite of the bottlenecks (such as, e.g., triangular

routing), represents one of the popular approaches to address mobility in the existing

Internet architecture initially designed for stationary hosts. Mobile IP protocol is

intended to run with minimal changes to the present end hosts in the Internet by

introducing a home agent and a foreign agent for a mobile node. These agents

continuously maintain a binding between each other through a tunnel so that the

home agent is always aware of the current IP address of the mobile node via its

foreign agent. Binding updates are performed either upon changing of the network

attachment point by the mobile node or when the binding lifetime has expired. The

mobile node is always identified with its home agent and regardless of any physical

movements and changes of its network attachment point, the IP address of the

mobile node remains the same for respective transport connections. This way IP

mobility performed on the network layer is transparent to the upper layers protocols

and applications [88].

In research, there can be found several comparative studies and performance eval-

uations of different mobility protocols on conventional PCs or laptops. Henderson

21

et al. [40] present experience with the Host Identity Protocol from the perspective

of secure mobility and multihoming. The contribution of the paper is significant as

it provides a comprehensive comparison of HIP and other mobility and multihoming

approaches, as well as reports on a HIP pilot performance and identifies directions

for future research. In particular, HIP mobility is compared to the Mobile IPv6 with

“route optimization” from the MIPv6 base specification [46]. The authors highlight

the main differences in mobility procedures such as the use of MIPv6 Binding Update

versus HIP Readdress packets; MIPv6 non-IPsec mode versus HIP tight integration

with IPsec; MIPv6 home agent versus the use of directory services in HIP; MIPv6

subnet mobility versus pure HIP host-centered approach; security of MIPv6 ver-

sus HIP mobility update mechanisms [40]. It is worth mentioning though that the

specifications of both protocols have changed since the publication of this article.

MIPv6 route optimization has been updated by “Enhanced Route Optimization for

Mobile IPv6” [6]. An enhanced procedure benefits from shortening of the handover

latency, raising security and lowering signalling overhead. HIP specifications have

matured to RFCs 5201-5207 and some parameters of the mobility mechanism have

changed, too. For instance, the REA parameter has been substituted by the new

LOCATOR parameter [79]. Besides this, Novaczki et al. [85] have suggested an

approach to network mobility based on HIP, titled HIP-NEMO, thus extending HIP

context from pure host mobility and multihoming.

Jokela et al. in an early work [48] compare performance of a vertical hand-off with

the HIP and the MIPv6 protocols while switching between a WLAN and a GPRS

network. The authors measure a signalling delay in both protocols, starting from

the first update packet and ending with the first recovered packet of a TCP data

stream. In this study, HIP notably outperforms MIPv6 in terms of the average

duration of a mobility update (2.46 versus 8.05 seconds respectively). However,

the authors suggest that in theory both protocols should perform similarly and

explain their empirical results by a bug in the measured MIPv6 implementation

that caused simultaneous use of two interfaces for the same TCP stream (packets

and their ACKs) for a certain time span during the update procedure. This in turn

resulted in overloading of the GPRS link and dropping and retransmitting some

of the MIPv6 signalling packets. In the future, the authors plan to measure other

MIPv6 implementations, as well as the enhancements to the current mobility update

procedures. The work by Jokela et al., however, does not concern the perspective of

the underlying hardware and the types of the communicating hosts we are interested

in. It compares the work of two separate approaches to mobility in practice rather

than evaluates performance of a single protocol on different hardware platforms.

22

Nevertheless, the article provides a useful reference material for our research.

3.2.2 Multilayered mobility management

Numerous studies took a multilayered approach to mobility and evaluated feasi-

bility and efficiency of integrating multiple protocols operating on different OSI

layers [9, 28, 64, 49, 95, 101]. Of these, considerable research has been conducted

on combining network layer mobility mechanisms with mobility on the application

layer. The intention of such integration approaches is usually to provide “all-in-one”

mobility support for versatile types of applications, improve QoS and shorten time

needed to perform a handover. For instance, the authors of [64, 49, 101] proposed a

multilayered mobility management approach based on a combination of the Session

Initiation Protocol (SIP) [90] and the Mobile IP.

Schulzrinne and Wedlund [92] describe how SIP signalling provides terminal, ses-

sion, personal, and service mobility for different applications. By drawing a parallel

between SIP and Mobile IP and comparing flexibility provided to users, the au-

thors identify the most favourable scenarios for each protocol and conclude that

application-layer mobility can successfully be a partial substitution or an extension

for network-layer mobility. Despite its well known limitations, MIP is found by the

authors to be more efficient for terminal mobility and TCP connections [92].

Similarly with Mobile IP, HIP has become a candidate protocol to combine it with

SIP for cooperative mobility management on two layers. Henderson [39] discusses

possible integration of SIP and HIP and, among the main benefits, which the latter

protocol might potentially bring to the former, lists resistance to DoS attacks, the

ability to preserve TCP sessions upon an IP address change, better micromobility

management, NAT traversal, and the possibility to integrate some HIP and SIP

components (such as a HIP rendezvous server and a SIP proxy). However, the

author emphasizes that it is not clear whether all mentioned HIP features, due to

their immaturity as of writing the article in 2004, can turn to be advantageous

to SIP in the future [39]. Since the time of the Henderson’s discussion both HIP

and SIP have matured and now open up new perspectives for combining them.

HIP, for example, has been specified in the seven RFCs (5201-5207), including the

specifications for registration, rendezvous, mobility and multihoming, DNS and NAT

traversal extensions. In addition, several proposals have been suggested for HIP

micromobility [84, 96, 108] and network mobility [85, 41] support.

Since Henderson, HIP and SIP integration has been further reflected in research. A

hybrid scheme called SHIP has been suggested by So et al. [95]. Based on experi-

23

Figure 3.1: SHIM6 and HIP layers in the protocol stack.

mental evaluation, the authors show that SHIP outperforms a hybrid MIP and SIP

scheme in terms of signalling overhead and efficiency [95]. A more recent work by

Camarillo et al. introduces a framework for combining SIP and HIP and emphasizes

its advantages [9].

3.2.3 SHIM6

SHIM6 presents an approach that has much in common with the Host Identity Pro-

tocol. The core specification of SHIM6 is presented in the Internet-Draft “Shim6:

Level 3 Multihoming Shim Protocol for IPv6” [83]. The protocol aims at providing

multihoming functionality for IPv6 protocol enabling also reachability and failure

detection mechanisms. With multihoming capability Internet hosts are able to share

their communication loads between different network interfaces. Besides that, when

some of the currently used locators change or stop working, SHIM6 reacts appro-

priately by switching to new locators seamlessly for upper layer applications and

protocols [83].

HIP also provides support for host multihoming using update mechanisms similar

to mobility. HIP is based on the concept of locator-identifier split and, similarly

with SHIM6, introduces a new protocol layer between the network and transport

layers (see Figure 3.1).

24

3.3 HIP performance evaluation

In addition to theoretical comparison of mobility approaches, Henderson et al. [40]

present their performance results of HIP running on Dell Latitude laptops. These

results are particularly interesting to us in respect to our own empirical study (see

Chapter 6) because the CPU clock frequency of the platforms in both studies are

in the same range (the Dell laptop had a 266-MHz Pentium II CPU [40] whereas

the Nokia 770 is powered by a 220-MHz ARM processor [54]). Obviously, there are

other potentially influential factors that, in fact, have been different in the exper-

iments (e.g., Linux kernel version, network connection and the amount of RAM).

Nevertheless, the results by Henderson et al. are comparable to ours in terms of the

total duration of a HIP base exchange for a lightweight initiator and the impact of

the puzzle difficulty on the average processing time. While a HIP handshake on the

Dell laptop takes 0.95 seconds, the Nokia 770 performs a BEX in 1.40 seconds on

the average. Both studies show an exponential growth of the puzzle processing time,

which increases dramatically with the puzzle difficulty set over 15 bits. A three-way

HIP mobility update takes on the average on the Dell laptop 180 ms and on the

Nokia tablet 287 ms. While comparing the total duration of a HIP handshake or a

HIP mobility update it is important to know what the Round-Trip Time (RTT) in

both experiments accounts for. Unfortunately, Henderson et al. do not provide such

information, only indicating that the communicating Dell laptops were connected

over 10Base-T Ethernet. In turn, in our experiments an average RTT was equal to

2.8 ms, accounting for a negligible part of the handshake duration. Both studies

indicate that a large part of the BEX and update time is spent on the cryptographic

operations such as signing and verification procedures [40, 54].

Another study by Nikander et al. [82] proposes a HIP-based cumulative way to

address security, mobility and multihoming in the current Internet. Besides an

extensive description of the architecture and its components, the authors present

early implementation status and initial results of performing a HIP four-way ex-

change on two 800-MHz Pentium III machines running NetBSD 1.6 and connected

via a 100-Mbps Ethernet. Interestingly, the processing time that includes solving a

cryptographic puzzle greatly varies in the experiments even when puzzle difficulty

K is under 10 bits (from 300 to 2300 ms). The authors explain such deviation

by an indeterministic character of puzzle solving operation, which requires a larger

number of measurement repetitions to get more actual and precise results. Varying

time needed to solve a puzzle subsequently makes an impact on total duration of

a HIP association establishment, which ranges from 600 ms to 3 seconds with K

equal to zero and 10 respectively. Further increasing K raises processing time by

25

a large factor, approaching 100 seconds when K amounts 15 [82]. This exponen-

tial growth goes very well with theoretical expectations, the results presented by

Henderson et al. [40] and our own results illustrated in Section 6.3.2. However, in

our measurements on a Nokia 770, an embedded Linux PDA, a boundary, which

determines a rapid increase of the puzzle processing time, is K = 15. Even with this

value of the puzzle difficulty, the Nokia 770 spends only 1.5 seconds on the average

on the respective base exchange phase, which is highly contrasting with the above

value of 100 seconds observed by Nikander et al. [82]. One potential reason for dif-

ferent results might be differences in the HIP implementations, operating systems

and underlying hardware platforms.

Pääkkönen et al. in a recent study [87] present detailed measurement results of the

HIP-based handovers performed between different access networks and IP address

families. In addition, the authors consider various triggers to deliver event infor-

mation between the layers of the protocol stack, such as changes in IP addresses,

routing tables, and on the link layer. In the evaluation, triggering is thus integrated

with mobility in a testbed that includes a mobile node, a mobile router, a mobile

phone and a correspondent node that are all connected via versatile accesses (LAN,

WLAN, 3G and Bluetooth). The underlying test platform is FreeBSD that runs HIP

(here HIP4BSD software). The contribution of the study is an extensive evaluation

of the impact made by individual components, which constitute to the overall trig-

gering and handoff latency performed with varying access networks and IP protocol

versions. For instance, the delivery time of a mobility trigger from the IP to the

HIP layer ranges from 49 to 226 ms. HIP handover delays vary from 0.5 to 2.9 sec-

onds for the LAN→WLAN switching and from 1.5 to 2.5 seconds for the LAN→3G

handoff. According to the authors’ observation, Duplicate Address Detection and

Router Discovery increase the handoff latency in case of IPv6 autoconfiguration.

Interestingly, processing of a HIP ACK message involving updates to SAs (Security

Associations) and SP (Security Policies) on the correspondent node might occupy

up to 55% of the total handover duration. With 3G, the major impact is made by

the link latency [87].

3.4 Security and mobility issues in wireless networks

In this section we describe selected works in the field of security and mobility in

wireless networks that are relevant to our authentication architecture presented in

details in Chapter 8. Our original work [61] has much in common with research

problems described in this thesis in a way that it addresses security and mobility

26

issues in wireless LANs by exploiting many of the HIP properties. However, cryp-

tographic operations involved with HIP might negatively affect performance of the

whole architecture if it consists primarily of the lightweight components. Not all

models of the Wi-Fi access routers, for instance, are equipped with sufficient hard-

ware resources to be part of such an architecture. Section 8.4 focuses on this issue

and provides interesting details. Below we refer to several related research areas.

An architecture for secure and mobile Wi-Fi sharing is proposed by Heer et al. [35,

37]. PISA (P2P Wi-Fi Internet Sharing Architecture) eliminates well-known security

risks and attacks in open wireless networks. It also provides a solution for client

authentication and mobility, which is similar to our proposal described in Chapter 8.

On the other hand, PISA focuses on serving a slightly different role in the Internet,

namely implementing secure access control for global Wi-Fi sharing communities.

Similar work [23] considers distributed authentication, authorization and accounting

(AAA) in community Wi-Fi networks. It concentrates on building trust chains

between communicating entities using certificates and certificate authorities (CA).

Later valid certificates serve for authenticating the clients, as well as for identifying

and validating the decentralized AAA servers.

The concept of a distributed firewall used in our approach is not novel but existed

for a long time. Studies [43, 98] discuss the advantages of a distributed firewall

over a conventional centralized firewall in changing network topologies. The papers

describe key points in implementing a distributed firewall, including a mechanism

to enforce network security policy through a policy language. Additionally, a dis-

tribution scheme and an authentication technique for network entities participating

in the policy enforcement process are presented.

Source address validation is another topic related to our work. Source address vali-

dation architecture (SAVA) [103, 104, 105] addresses the problem of source address

spoofing on different levels of granularity, from a local subnetwork to autonomous

systems.

4 Research Problem

In this chapter we articulate the research problem that motivated us for this work.

We discuss three different perspectives of the problem: security, mobility and energy

consumption.

4.1 Security perspective

Although there have been several activities on adapting IP technology [19, 17] and

some related applications to embedded systems with severely constrained resources,

the security aspect of using the TCP/IP stack on lightweight devices is not suf-

ficiently explored. Among other researchers, Abeillé et al. [5] note that further

studies are necessary to evaluate security mechanisms in the lightweight IPv6 stack

implementations dedicated to small objects. CPU, RAM and battery constraints

of lightweight mobile devices raise the concern whether IP security mechanisms

might be employed there without major modifications. In particular, asymmetric

cryptography algorithms implemented in software used to secure communications

between mobile resource-constrained devices can easily stress their CPU and mem-

ory resources, as well as negatively affect battery lifetime, TCP throughput and

Round-Trip Time.

We address this problem by measuring and evaluating performance of different IP

security components in the Host Identity Protocol. We analyse the impact made

by the heavyweight cryptographic operations on the constrained resources of mobile

devices, such as CPU load, RAM usage, and battery lifetime. We also assess the

impact made by the limited processor power and memory constraints on the dura-

tion of certain protocol parts including HIP base exchange, HIP mobility update,

puzzle solving procedure, and generation of a public-private key pair. In addition,

we evaluate the effect of IPsec ESP encryption on packet latency and TCP through-

put. This allows us to make recommendations on suitability of unmodified HIP for

lightweight class of mobile clients.

4.2 Mobility perspective

Mobility of a device denotes its freedom from a fixed network attachment point.

Thus, efficient and reliable mobility solutions are necessary for this class of devices.

If mobility does not work properly, the device loses its notion of being mobile. You

27

28

can still carry it wherever you go, however, most likely, you will not be able to

utilize its full potential and keep your Internet sessions ongoing due to the limited

network coverage or changes of the network attachment point. On the other hand,

for a mobile client connected to the Internet wirelessly, i.e. via a cellular network or

a WLAN, the threat of attacks and the probability to be compromised are raising

compared to the wired networks. Hence, mobility needs to be secure.

Numerous solutions proposed in the literature range from network and application-

layer mobility to multilayered approaches [40, 82, 48, 49, 64, 95, 39]. However,

little knowledge is available on how well these solutions scale to the nature of the

embedded platforms that have distinct requirements from the desktop computers

and often behave differently. A mobile phone changes its network attachment point

more frequently than, e.g., a laptop or a PC. In addition, limited resources of an

embedded platform underlying a mobile phone may produce a need to adjust or

tailor existing solutions to achieve better performance.

Our objective with respect to mobility in this work is to identify potential issues

of running the IP-based secure mobility and multihoming protocols on lightweight

clients with constrained resources. Based on our experiments, we show that a HIP

mobility update lasts on a Nokia 770 Internet Tablet almost three times longer on

the average than on a laptop with similar RTT for both clients. Long duration of a

network-layer update procedure on small mobile devices might produce implications

for upper-layer applications. For some applications, there are strict timeouts and

requirements for the duration of an update procedure to be able to sustain an

IP address change. This motivates us to look at performance issues of secure IP

mobility.

4.3 Energy perspective

Power consumption is another critical issue for a mobile, battery-powered device. A

concept of accumulating power from a small battery rather than from a fixed power

outlet allows devices to be wearable, which partly constitutes the notion of mobility.

The challenges, however, arise from limited battery capacity that often prevents the

applications, especially involving wireless data transmission, from being active for

a long time. If an appliance needs to be recharged often, one can hardly call it

mobile as it requires frequent periodical wired connection to an electricity supply.

Coping with battery constraints on lightweight mobile handhelds is not an easy task

from the engineering perspective. Constantly increasing battery capacity cannot be

a long-term solution to the problem as it produces more heating to a mobile device

29

making it less comfortable to use.

The use of wireless connection by a mobile device and computationally expensive

cryptography operations increase energy consumption and shorten battery depletion

time. One of our objectives in this thesis is to evaluate the impact made by the

IP security and mobility mechanisms on power consumption and battery lifetime

of a lightweight mobile device. In our experimentations, we measure the power

consumption of the Host Identity Protocol, which provides secure mobility by means

of public-key cryptography and IPsec ESP encryption.

5 Methodology

In this chapter we present the methodology for our work. First, we state the main

research methods. Next, we describe the primary research tools used in our experi-

mentations. Finally, we define the core assumptions in our work and limitations of

the research prototypes.

5.1 Research methods

The primary research methods used in this work have been literature study and

measurements performed in a real test network. Through the literature study we

obtained the insights into the research problem, evaluated the contribution of the

related work in the same field, and gained necessary background knowledge. The

survey of the related studies allowed us to draw some parallels with our own em-

pirical performance results. The empirical results were conducted in a number of

experimentations involving several mobile clients communicating with other hosts

and between each other in a variety of scenarios. We measured a set of different

parameters related to the Host Identity Protocol and two general network charac-

teristics. To get statistically more accurate results we repeated each measurement

a number of times. We then analysed the results from different perspectives and

made conclusions about feasibility of using unmodified HIP and IPsec on lightweight

mobile clients.

5.2 Research tools

This section presents a set of the tools that we have been using to accomplish

empirical part of our research. We start with a description of the development

environment that allowed us to port HIP to Maemo and Symbian mobile platforms.

We then introduce our test network and its components followed by a list of the

measurement tools.

5.2.1 Development environment

In the development phase, we ported an existing HIP software to two types of mo-

bile platforms, Linux Maemo and Symbian S60. For Maemo, we took the existing

HIPL (HIP for Linux) protocol implementation and compiled it for the Nokia 770

30

31

Internet Tablet using the Scratchbox cross-compilation toolkit and a Maemo SDK.

Further details on this process can be found in Section 6.1. For Symbian, the port-

ing procedure has been far more difficult due to the restrictions of public Symbian

SDKs and the platform-dependent HIPL code. Before we were able to run the pro-

tocol and measure its actual performance on a Symbian smartphone we needed to

go through a number of steps that are described in details in Section 7.1. As the de-

velopment environment we used an S60 3rd Edition Platform SDK for Symbian OS,

the Carbide.c++ IDE and the Open C SDK plug-in for S60 3rd Edition SDK. An

important role in the whole porting process to Symbian was given to the Symbian

S60 Emulator supplied with the SDK. With the emulator, we were able to debug

runtime code errors with less effort and test the main protocol operations before

measuring their performance on the actual mobile phones, Nokia E51 and N80.

5.2.2 Experiment setup

Measurements have been an essential part of our experiments to conduct empirical

results about performance of public-key operations and IPsec ESP encryption on

different mobile platforms. For the measurements we constructed a test network

consisting of a wireless access router IEEE 802.11 b/g connected with a server via a

network switch. Mobile clients such as a Nokia 770 Internet Tablet, an IBM laptop

and a Symbian-based Nokia E51 smartphone were connected to the network via

their wireless interfaces. The general network view is presented in Figure 5.1.

5.2.3 Measurement tools

To measure different protocol and network performance metrics we used a number of

tools and utilities, including iperf, ping, tcpdump, ping6 and Wireshark (Ethereal).

With iperf we measured the TCP throughput, with ping and ping6 we measured

the RTT and triggered the HIP base exchange. We used tcpdump and Wireshark

network analyser to capture traffic, analyse individual data packets and record their

arrival and departure times to calculate the duration of particular operations. In

addition, we created a set of shell scripts to automate measurement process and ease

repetition of the measurements. To analyse hardware resource utilization during

the protocol operations we used Nokia Energy Profiler with the Nokia E51 phone.

With the Nokia 770, we originally used an external multimeter to measure current

consumption of different applications running on the Internet tablet by connecting

its battery pins with the multimeter probes. With the OpenHIP implementation, we

used time stamps in the code to measure the delays of certain protocol operations.

32

Figure 5.1: General view of the network setup.

5.3 Limitations and assumptions

When measuring duration of a HIP mobility update we “artificially” triggered mo-

bility by removing the current IP address of the Nokia 770 and adding a new IP

address manually. In this way we emulated a horizontal handover. Our assump-

tion was that regardless of the way, in which the IP address changes, HIP notices

such a change and initiates a three-way HIP mobility handshake. By the handshake

duration we mean the time needed for a mobile device to exchange three mobility

update packets with its peer before the data transmission continues.

As will be in details illustrated in Section 7.1.5, our Symbian HIP ports have several

limitations. First, we implement only the base operations of HIP including the HIP

base exchange and the security association establishment. Second, data encryption

by the IPsec ESP protocol is not realized due to the limitations of the public Sym-

bian SDKs and the complexity of implementing a substitute to the Linux TUN/TAP

device driver on Symbian. Finally, our Symbian ports can be run only on a limited

number of the end user smartphones. Symbian platform security concept neces-

sitates signing of each application package against a specific phone’s IMEI before

the package can be installed on the device. This makes debugging on the target

hardware inconvenient, requiring numerous rebuilding and resigning steps, and, at

the same time, complicates the large-scale deployment of the software.

6 Performance of Host Identity Protocol on Nokia

Internet Tablets

In this chapter, we report our experience with running the Host Identity Proto-

col on a Linux-based Nokia Internet Tablet. The chapter is based on our article

Performance of Host Identity Protocol on Lightweight Hardware7 [54]. Section 6.1

briefly describes the Nokia 770 Internet Tablet hardware and software, as well as

our port of the HIPL implementation. In Section 6.2 we present the components

of our experimental testbed. Section 6.3 contains measurement results of HIP over

WLAN with a Nokia 770 tablet in a set of scenarios. In particular, we measure the

duration of a HIP base exchange, a HIP mobility update, the data throughput and

the latency of a wireless network, as well as the impact of the protocol operations on

power consumption of a Nokia 770. We analyse each type of the measurements and

conclude about potential HIP implications for similar mobile devices with restricted

resources. Finally, Section 6.4 summarizes our performance evaluation on Nokia 770

with a list of recommendations.

Our choice of Nokia 770 Internet Tablet as a target device for experimentation had

been supported by several factors. First of all, it is a resource-constrained PDA

that provides a good example of lightweight hardware for assessing performance of

IP security and mobility. Second of all, such a handheld ideally represents a mobile

client constantly moving across the Internet and changing its network attachment

point. In this approach, the tablet would be a desired target to test a mobility

protocol, e.g., the mobility extensions of HIPL. Next, at the time of the experimen-

tation, Nokia 770 was gaining its popularity among both end-users and developers,

which resulted in a number of multimedia applications that might potentially utilize

the benefits of HIP. Finally, the embedded Linux OS running on Nokia 770 made it

easier to port the existing HIPL software from desktop to mobile platform.

6.1 HIP on the Nokia Internet Tablet

This section outlines the Nokia 770 technical specifications, as well as describes the

porting process of the HIPL implementation.

The Nokia 770 Internet Tablet is a Linux-based handheld with a high-resolution

touch screen display, built-in WLAN and Bluetooth support. Mainly designed for

7 c© 2007 ACM. Used with permission.

33

34

easy Web browsing, the tablet is also convenient for Internet telephony and instant

messaging, reading emails and documents, and delivering media content. In its core,

Nokia 770 has a Texas Instruments (TI) OMAP 1710 CPU running at 220 MHz. The

device comes with a 64 MB DDR RAM and is powered by a 1500-mAh Li-Polymer

battery. The operating system is a modified version of Debian/GNU Linux. For

our experiments, we used a release version known as the Internet Tablet OS 2006

edition. It has a GNOME-based graphical user interface and runs a 2.6.16 series

Linux kernel.

Porting HIP to the Nokia 770 Internet Tablet consisted of two main stages, con-

figuring and compiling the Linux kernel, and building the protocol software for the

Nokia 770. Since the handheld is running an embedded Linux, we used an existing

Linux implementation of the protocol, HIP for Linux (HIPL), developed at Helsinki

Institute for Information Technology. Although the HIP daemon and other utility

programs of HIPL are the userspace applications, several modifications to the Linux

kernel were necessary to support HIP at the time of the experiment. In particular,

we had to apply an IPsec BEET patch, configure support of the IPv6, IPsec, AES,

3DES, and SHA1 algorithms and recompile the kernel for the ARM platform. To

build the HIPL userspace applications and the Nokia 770 Linux kernel we used a

cross-compilation environment Scratchbox that emulates the ARM environment on

a PC and allows compiling the applications, which later can be installed on a real

device.

6.2 Test environment

We performed our measurements on a Nokia 770 Internet Tablet (from now on - the

Tablet) and an Intel Pentium 4 CPU 3.00 GHz machine with 1 GB of RAM (the

PC) connected to each other via a switch and a WLAN AR in our test network (see

Figure 6.1). The network provided both IPv4 and IPv6 addresses. The wireless AR

supported IEEE 802.11g standard and WPA (Wi-Fi Protected Access) encryption.

All communicating parties used the same implementation of HIPL. To better in-

dicate the Tablet’s performance level we repeated our measurement scenarios with

a more powerful, 1.6 GHz IBM laptop (the Laptop) connected to the PC over the

same wireless link as the Tablet. Through comparison we evaluated the impact

of the Tablet’s lightweight hardware on the maximum achievable data throughput,

latency, duration of the base exchange and mobility update operations.

35

Figure 6.1: Test network with Nokia 770.

6.3 Experiment results on Nokia 770

This section presents the results of our experiments with the Host Identity Protocol

on the Nokia 770 Internet Tablet. First, we introduce the platforms and the network

environment we used. Then, in the following subsections we report the measurement

results and their interpretation.

6.3.1 Duration of a HIP base exchange

A HIP association is set up by exchanging four control packets between communicat-

ing hosts. The purpose of measuring the HIP base exchange time was to determine

the duration of various BEX stages such as generating and processing the HIP con-

trol messages by the Tablet in comparison with the Laptop. The measurement was

performed using a script that established a HIP association 50 times in a number of

scenarios, which were distinctive from each other by the participating mobile device

(Tablet or Laptop), by the IP address family (IPv4 or IPv6) and by the algorithm

used (RSA or DSA). Since we did not find significant differences between IPv4 and

IPv6 performance we present only the results with the RSA HITs mapped to the

IPv6 addresses of the hosts.

Figure 6.2 depicts the times that were measured in our experiments. We leave

36

Figure 6.2: Time spans measured on the Initiator and the Responder.

out I1 packet generation time due to its insignificance (the parameters of the I1

packet only include Initiator’s and Responder’s HITs, which are not signed). T1

represents the time for the Responder to process an I1 packet and generate an R1.

According to the HIPL implementation, Responder does not spend much time for

this phase since it chooses pre-created and signed R1 messages and adds a puzzle

to them just before sending the packet to a network. The next time, T2, contains a

number of CPU-intensive cryptographic operations such as generating and verifying

signatures, calculating a Diffie-Hellman (DH) session key. During this stage the

Initiator must also solve the challenge it received from the Responder. T3 indicates

the time needed by the Responder to process an I2 packet that involves the puzzle

solution check, Initiator’s public key verification and computation of the DH session

key. If the puzzle was solved correctly, Responder generates an R2 message and

signs it. Finally, during T4 the Initiator processes the R2 packet and completes the

BEX. At this point, the HIP association is established.

Figure 6.3 illustrates T1, T2, T3 and T4 times as well as the total duration of the

HIP base exchange. We compare the results for two different HIP associations where

the Initiators are Tablet and Laptop with the PC acting as the Responder. Thus,

T1 and T3 times are measured for the PC whereas T2 and T4 times correspond to

both Tablet and Laptop. As the figure indicates, the Laptop greatly outperforms

37

 1.5

 1.4

 1.3

 1.2

 1.1

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
BE timeT4T3T2T1

A
ve

ra
ge

 ti
m

e
(s

)

Tablet
Laptop

Figure 6.3: Duration of HIP base exchange stages for Tablet and Laptop.

the Tablet for all operations involved with BEX. T2 time for the Tablet is nearly 1.2

seconds which is significantly longer than the respective one of the Laptop (0.14 sec-

onds). The majority of T2 is spent by the Tablet on the operations with the public

key signatures and generation of the Diffie-Hellman session key. This processing

time heavily depends on the length of a public key and the DH Group ID. For our

base tests on Tablet and Laptop we used the RSA key size of 1024 bits and 1536-bit

DH Group.

The next test established a HIP association initiated by the PC while the Tablet

acted as the Responder. The results suggest that the base exchange time is inde-

pendent of whether the PC or the Tablet initiates the handshake. In both cases,

having the precreated R1 packets, the base exchange lasts around 1.4 seconds.

Although 1.4 seconds to perform a HIP handshake between the Tablet and the cor-

respondent PC might be acceptable for users and applications, HIP communication

of two lightweight devices produces a higher delay. The BEX duration for a Tablet-

to-Tablet scenario is over 2.6 seconds. The Tablet spends a similar period of time in

T2 and T3 phases. The amount of work by the Tablet-Initiator during the phase T2

is analogous to that performed by the Tablet-Responder during the phase T3. The

38

 100

 50

 20

 10

 5

 2

 1

 0.5

 0.2

 0.1

 0.05

 0 5 10 15 20 25

A
ve

ra
ge

 ti
m

e
(s

)

Puzzle difficulty

Tablet
Laptop

Figure 6.4: T2 processing time versus puzzle difficulty.

only difference is that in T2 the Initiator spends the time for solving a cryptographic

challenge whereas in T3 the Responder is supposed to verify the solution to that

challenge and also validate the Initiator’s HMAC signature. Otherwise, the same

operations on public key signatures and Diffie-Hellman keys are carried out by both

parties. Later, in the next section we will show that solving a puzzle with difficulty

of ten makes a minimal impact on the T2 processing time. Considering this fact

and also that puzzle solution check and HMAC validation in T3 are not computa-

tionally expensive we believe that the major influence on the BEX parts and the

total BE time is exerted by cryptographic operations costly for Tablet’s CPU. Such

operations include signatures verification and generation, as well as computation of

the Diffie-Hellman session key.

6.3.2 Puzzle difficulty

Upon receiving an R1 packet, the Initiator is expected to solve a cookie challenge

(puzzle) it gets from the Responder. This is done to protect the Responder against

possible Denial-of-Service attacks by compelling the Initiator to spend a certain

39

Table 6.1: Median and average T2 with standard deviations for varying puzzle

difficulty.

T2 Median/Average±Stdev (sec)

K (bits) → 5 10 15 20

Tablet 1.03/1.03±0.03 1.19/1.19±0.02 1.33/1.41±0.28 9.06/12.21±9.72

Laptop 0.13/0.14±0.03 0.13/0.14±0.03 0.16/0.18±0.04 0.83/1.20±1.01

amount of CPU cycles to find a right answer. Depending on the conditions, i.e.,

on the trust level between the communicating endpoints, the Responder has an

opportunity to adjust the puzzle difficulty to be solved by the Initiator [72]. The

difficulty (K) is represented by a number of bits that must match in a hash output

sent back to the Responder. In the presented scenarios the default puzzle difficulty

of ten was used. To see how the duration of the base exchange is affected by the

puzzle difficulty we measured the time T2 with varying value of K.

Figure 6.4 illustrates this dependency for the Tablet and the Laptop and shows

that the time needed to solve the puzzle grows exponentially with increasing its

difficulty. The graph depicts the average T2 processing time for the puzzle difficulty

ranging from 0 to 25. The number of runs in each experiment was 30. In Table 6.1

we present the mean values and the standard deviation of the T2 processing time

that includes the time needed to solve a puzzle by the Tablet and the Laptop.

The tabulated results show a substantial increase of the standard deviation with

the growing puzzle difficulty. As was noted by Nikander et al. [82] in their study of

HIP, the reason likely comes from the indeterministic character of the puzzle solving

procedure, measuring which requires a larger amount of runs.

An interesting point that we observed in our experiment is that the processing time

starts rising dramatically when the puzzle difficulty is set to 15. Prior to this value

the effect of increasing the difficulty level is tiny. There is a little difference between

the processing times measured for the K values of zero and ten as compared to

the T2 value itself of approximately 1 second. This consequently means a minor

influence of the puzzle solving time to the total BEX duration in our measurements

with the puzzle difficulty of ten.

There is a time limit during which the Initiator must find a solution to the challenge.

With Nokia 770, setting a high value of K by the Responder would not be possible

40

since the Tablet’s CPU will spend a long time to solve such puzzle. For example, a

puzzle difficulty of 20 would keep the Tablet’s CPU busy for over 10 seconds which is

unacceptable for most applications. The Laptop, in contrast, would solve a similar

challenge in 1.3 seconds on the average. Balancing between the puzzle difficulty and

the time limit during which a correct solution is valid for the Responder might be

an issue when using the lightweight hardware in a hostile environment with a low

level of trust.

6.3.3 Diffie-Hellman

The Diffie-Hellman (DH) key exchange protocol is used in HIP to exchange the pub-

lic keys of the hosts and produce a session key for the Initiator and the Responder.

A piece of keying material is then generated from the session key and is used to

create the corresponding HIP associations by the communicating parties [72]. The

Responder includes in the R1 packet one or two its public DH keys. Upon receiving

the R1 message with two DH values, the Initiator is supposed to select one that

corresponds to the strongest DH Group ID it supports. Using different DH Groups

makes it possible to affect the generation time of the DH session key and as a result

the total duration of the HIP base exchange. In reality, this means an opportunity

for a server to offer smaller DH public values to lightweight clients that are not

powerful enough or if the security is not of critical importance.

We measured the T2 processing time containing the generation of the DH session

key by the Initiator-Tablet and the Initiator-Laptop. The average T2 times for

the different DH groups are plotted in Figure 6.5. The graph shows an exponential

growth in the processing time as the DH group ID increases. When using the weakest

384-bit DH Group, the Tablet is able to complete the T2 phase in less than 130 ms

on the average. This reduces the four-way base exchange to some 200-300 ms with

the PC as the Responder. With the 768-bit DH Group, T2 processing time for the

Tablet is slightly higher and amounts to 234 ms, resulting in 340 ms on the average

for the total duration of the HIP BEX with the PC. However, switching to the

1536-bit DH Group for better security, produces a longer delay close to 1 second

on the average. Further increasing the DH modulus length to 3072 and 6144 bits

(which might be required under attacks) is not feasible for the Tablet as it results in

the tremendous delays for the applications (over 5 and 35 seconds correspondingly).

In comparison with the Tablet, the Laptop is capable of handling the stronger

encryption and spends less than 0.66 seconds on the average to compute the session

key with the 3072-bit DH Group.

41

 50

 30

 15

 5

 2

 1

 0.5

 0.3
 0.2

 0.1

 0.05
6144307215367683840

A
ve

ra
ge

 ti
m

e
(s

)

DH Group (bits)

Tablet
Laptop

Figure 6.5: T2 processing time with different DH groups.

Our Diffie-Hellman measurements were conducted with a HIPL code snapshot as of

May 2007 running on the latest version of the operating system on the Tablet. The

DH experiment was also performed in a test network different from the one used for

the rest of our HIP measurements. We see these factors as a reason for a difference

of the results in the processing time of the HIP control packets on the Tablet (see,

for example, Figure 6.4 and Figure 6.5).

6.3.4 Round Trip Time

The RTT (Round Trip Time) equals the time for a packet to travel from a node

across a network to another node and back. Our tests evaluate the effect of HIP

and, in particular the IPsec BEET mode, on RTT. The tests used the ping6 tool for

sending the ICMP messages over HIP (messages encapsulated with ESP) and over

plain IP. We measured RTT in several scenarios including the Tablet, the Laptop

and the PC acting as the HIP hosts. The number of runs in each test was 100.

Table 6.2 contains the median values of RTT measured over plain IPv6 and over

HIP. We calculated the median values instead of the mean values and the standard

42

Table 6.2: Median and average RTT with standard deviations for Tablet and Laptop.

RTT Median/Average±Stdev (ms)

IPv6 (64B) IPv6 (116B) IPv6/HIP

PC→Tablet 2.08/2.22±0.47 2.25/2.36±0.42 2.75/2.94±0.93

Tablet→PC 1.80/1.90±0.33 1.80/1.90±1.24 2.50/2.75±1.35

PC→Laptop 0.95/1.03±0.34 0.99/1.05±0.31 1.08/1.18±0.24

Laptop→PC 0.96/1.07±0.34 0.97/1.07±0.43 1.08/1.21±0.50

deviations because the RTT distributions in our experiments had several outliers.

The first outlier in each test was the first RTT value, which was large due to a

HIP base exchange and an ARP query performed upon the first connection. This

value was excluded from the distributions since our intention in this experiment

was to assess the impact of the IPsec encryption on the RTT. However, the RTT

distributions in some of the tests had other outliers not connected to the connection

establishment. For instance, the tests IPv6(116B) and the IPv6/HIP in the Tablet-

to-PC scenario contained one additional outlier caused by an unidentified reason.

To identify the exact reason for this outlier we would have had to repeat our tests at

least several hundreds times and look at the potentially influencing factors. With the

absent of the additional experiments, we decided to describe the whole distribution

to a reader with the cumulative distribution function (CDF) and show that the

frequency of the outliers in our 100-number distribution is rare. Figure 6.6 presents

the CDF for the RTT values in the Tablet-to-PC scenario using IPsec and illustrates,

for example, that the third quartile of this distribution equals to 2.60 ms and the

91.3% of the values do not exceed 3.00 ms.

The RTT time that we measured in the PC-to-Tablet scenario includes the

transmission time of an ICMP ECHO REQUEST message from the PC to the

Tablet, processing time on both hosts and the latency of delivering an ICMP

ECHO RESPONSE back to the PC. The default size of an ICMP message equals 64

bytes (56 data bytes and 8 bytes of the ICMP header). When used with the IPsec

BEET mode involved with HIP, the size of an ICMP message is augmented by the

ESP headers and amounts 116 bytes. We measured the RTT time for a plain ICMP

message of the size 64 bytes and 116 bytes, as well as for an ESP encapsulated ICMP

43

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RTT (ms)

C
D

F

Figure 6.6: CDF for the RTT in the Tablet-to-PC scenario with IPsec.

packet (IPv6 over HIP). The results indicate that increasing the size of the ICMP

packets merely does not affect the transmission latency. The major impact on the

RTT in our experiments was observed in the case with IPsec (2.75 ms) that slowed

down the packet processing on the Tablet by encapsulating the ICMP messages

with ESP. Comparing to a plain IPv6 message, the IPsec BEET mode increased

the median RTT value for the PC-to-Tablet connections by 0.67 ms. In contrast,

the same value for the PC-to-Laptop scenario is only 0.13 ms. According to this

comparison, the IPsec BEET mode involved with the Host Identity Protocol affects

more seriously the lightweight devices than the ordinary PCs or laptops.

6.3.5 Throughput

IPsec ESP data encryption performed by the Tablet can reduce the maximum

achievable throughput over the wireless link. We measured TCP throughput by

an iperf tool generating TCP packets to a correspondent node. It is necessary to

44

Table 6.3: TCP throughput in different scenarios.

Throughput Mean ± Stdev (Mbps)

Tablet→PC Laptop→PC

TCP 4.86±0.28 21.77±0.23

TCP/HIP 3.27±0.08 21.16±0.18

TCP+WPA 4.84±0.05 –

TCP/HIP+WPA 3.14±0.03 –

mention that the WLAN AR introduces its own data encryption by means of the

WPA protocol. Different tests had been performed to evaluate the overhead of the

ESP and WPA data encryption. The average values of the throughput are pre-

sented in Table 6.3. An average value of 4.86 Mbps represents an upper bound of

the throughput achievable by the Tablet acted as the Initiator (see Tablet-to-PC

scenario). This value was measured with plain TCP/IP traffic in a totally open net-

work with no encryption algorithms employed. Although the Tablet’s specification

claims supporting IEEE 802.11b/g standard with a maximum data rate of 54 Mbps,

the Tablet’s CPU or possibly bad device driver implementation impose their own

constraints. Further analysing the results, we might conclude that the WPA encryp-

tion makes a minor impact on the throughput. Enabling the WPA access control

on the WLAN AR reduces the data rate only by 20 Kbps. In contrast, the ESP

influence is much stronger and reduces the throughput by 1.59 Mbps in the same

network. The mutual impact of WPA and ESP is larger as double encryption is

used.

In comparison with the Tablet, the Laptop achieves 21.77 Mbps of the TCP data

rate over the same open wireless link (see Laptop-to-PC scenario). An interesting

observation is that with the Laptop the impact of the ESP encryption involved with

HIP is small as compared to the Tablet and equals 0.61 Mbps of the throughput

decrease.

Figure 6.7 graphically depicts the results and shows the distribution of the TCP

and TCP/HIP throughput over a WPA-free wireless link. The graph illustrates the

influence of HIP on the TCP throughput as well as the difference in values achieved

45

 0

 5

 10

 15

 20

 25

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Measurements

Tablet (plain TCP)
Tablet (TCP/HIP)

Laptop (plain TCP)
Laptop (TCP/HIP)

Figure 6.7: TCP throughput in an open wireless network.

by the lightweight Tablet and the much more powerful Laptop.

End-to-end security provided by HIP might be used not only for data protection

itself but also for authentication to an access router as an alternative to the WPA al-

gorithms in wireless networks. However, as the results above indicate for the devices

with limited computational power, the data throughput and latency are notably af-

fected by the ESP encryption in contrast to WPA encryption. In the absence of

hardware-accelerated cryptography or in the case of its improper implementation,

this might become a concern.

6.3.6 Duration of a mobility update

HIP sends mobility update packets when the IP address of a HIP mobile terminal

changes. We measured the time to exchange three mobility update packets by

manually changing the IP address of the Tablet’s network interface to trigger a

simple mobility event for HIP. We repeated our tests 35 times and calculated the

average value, which equalled 287 ms (see Figure 6.8). This time was necessary

to exchange three HIP mobility control packets between the Tablet and the PC

46

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 35 30 25 20 15 10 5 1

T
im

e
fo

r
M

ob
ili

ty
 U

pd
at

e
(s

)

Number of Measurements

Tablet
Laptop

Figure 6.8: Duration of a HIP mobility update.

and it also includes the RTT multiplied by 1.5. Comparing to the Tablet, the 1.6-

GHz Laptop was capable of completing the three-way mobility update with the

correspondent node in 100 ms on the average. One reason for a notable deviation

of the mobility update times visible on the graph can be the variation of the RTT

observed in the previous experiments.

However, in reality the detected delay for a mobility update can be lower for applica-

tions. Once the correspondent node receives the first UPDATE packet it knows the

Tablet’s new location and can transmit data to the new address using the Credit-

Based Authorization (CBA) mechanism. CBA limits the transmission rate to a new

IP address until it is verified to be reachable by the last two UPDATE packets.

Such practice prevents hijacking of arbitrary IP addresses. The average time for

generating, sending and processing the first UPDATE packet in our experiment was

around 20 ms.

47

Table 6.4: Power consumption by applications.

Application/Mode Current (A) Power (W)

HIP Base Exchange 0.36 1.33

ESP traffic (iperf with HIP) 0.38 1.41

Plain TCP (iperf without HIP) 0.38 1.41

Video stream from a server > 0.50 1.85

Local video 0.27 0.99

Audio stream from a server 0.40-0.50 1.48-1.85

Local audio 0.20 0.74

Browsing (active WLAN) 0.35-0.50 1.30-1.85

Passive WLAN 0.12 0.45

Idle mode 0.12-0.14 0.45-0.52

Standby mode < 0.01 0.04

6.3.7 Power consumption

Power consumption is a crucial issue for any portable device. The capacity of the

Nokia 770’s battery keeps the device in a standby mode for several days. However,

the battery resources are exhausted quickly by the applications requiring data trans-

mission over WLAN. The objective of measuring battery lifetime on the Tablet was

to assess how expensive the Host Identity Protocol operations might be in terms

of power consumption. We used an external multimeter to measure the consump-

tion of the battery’s current while the device was busy with various applications

(see Table 6.4). Given the capacity of the battery and the current consumed by

an application we were able to compute a theoretical time to deplete the battery.

Alternatively, we ran the same application on the Tablet with a fully charged bat-

tery until its depletion to verify our empirical assumption about the lifetime. With

HIP, the average current measured by the multimeter was 0.38 A. A fully charged

1500-mAh battery kept the Nokia Tablet working for about three and a half hours.

Our preliminary results show almost no difference in power consumption between

48

the HIP-enabled and non-HIP applications. Establishing a HIP association, mobility

update as well as ESP encrypted traffic all consume a similar amount of the current

(0.36-0.38 A) equivalent to a plain TCP/IP data connection. We interpret these

results as caused by the low computational power of the Nokia’s CPU which tries to

utilize all available resources upon transmitting data over WLAN irrespective of the

protocol and the application being used. However, we note that ESP does consume

more power beside the non-ESP applications if compared to the data throughput. In

other words, due to a lower bit rate caused by ESP data encryption a HIP application

(using IPsec) would require a notably longer time for a similar task to be completed.

For instance, taking into account our throughput measurement results the Tablet

would be able to transmit 100 MB of data in 165 seconds over plain TCP/IP while

the same task performed using IPsec would spend additional 80 seconds (totalling

245 seconds). In terms of power consumption the use of HIP and the accompanying

IPsec would therefore intend a longer CPU utilization and consequently a larger

amount of consumed energy.

6.4 Summary of the results

This chapter presented measurements and performance evaluation of the Host Iden-

tity Protocol on the Nokia 770 Internet Tablet. We found several interesting results

on the use of asymmetric cryptography on lightweight Linux PDAs. The results are

summarized below.

• In such scenarios where the Nokia 770 communicates through a single proxy

server in the Internet, a HIP association establishment takes 1.4 seconds

on the average (including two RTT of 2.5 ms). A three-way mobility update

between the Nokia 770 and the proxy in this case lasts 287 ms on the average.

• For scenarios involving two mobile hosts or multiple parallel HIP associations,

the delay for the end user increases almost twice. For two Tablets, a HIP

association establishment takes 2.6 seconds on the average.

• For applications that do not require strong security (i.e., web surfing) the

duration of the HIP association establishment with a server might be reduced

by using a smaller DH modulus length. For instance, with the 768-bit DH

Group and the 1024-bit RSA key length the average total BEX can be as low

as 0.4 seconds (including two RTT of 2.5 ms).

49

• Surprisingly, the Tablet only achieves the data rate 4.86 Mbps on the average

in a WLAN capable of 22 Mbps even without HIP. The use of the WPA

encryption has negligible effect on the throughput, but the ESP encryption

with HIP reduces the throughput to 3.27 Mbps on the average. It is still

sufficient for most Tablet’s applications.

• The RTT over WLAN is only several milliseconds in our experiments. The

ESP encryption increases the RTT by less than one millisecond that does not

noticeably affect the applications.

• The use of ESP encryption with HIP does not affect the instant current draw

in the Tablet, although the energy cost per byte is higher with ESP due to

reduced throughput. We noticed that the Tablet CPU is always fully utilized

when an application transmits data over WLAN that depletes the battery in

3-4 hours.

• We consider our measurement results to be potentially applicable to other

security and mobility protocols such as IKE [50] and MOBIKE [86], which

rely on similar public-key and IPsec ESP operations.

7 Performance of Host Identity Protocol on

Symbian OS

This chapter continues from Chapter 6 and reports on our experience with the Host

Identity Protocol on another operating system, Symbian OS, and another class of

devices, smartphones. While there are three open-source HIP implementations, little

experience is available with running HIP on lightweight hardware such as a cellular

phone. In this chapter we describe performance measurements of two different

HIP implementations ported to Symbian OS. In particular, we compare OpenHIP

and HIPL protocol implementations running on two Symbian S60 smartphones,

Nokia E51 and Nokia N80. The chapter is largely based on our article Performance

of Host Identity Protocol on Symbian OS 8 [53].

To check whether running IP-based security on smartphones is feasible, we per-

formed HIP measurements over WLAN with the Nokia E51 and Nokia N80 in dif-

ferent scenarios. Particularly, we measured the duration of a HIP base exchange

and its parts, as well as CPU load, RAM utilization and power consumption during

several phases of HIP daemon work. We found that, e.g., with 1024-bit keys, a HIP

base exchange with a server varies from 1.68 to 3.31 seconds depending on whether

the mobile phone is in standby or active state respectively. Extensive analysis of

HIP performance results allowed us to make conclusions and recommendations on

using unmodified HIP on lightweight cellular phones.

Symbian OS is one of the leading operating systems for smartphones. In Q2 2008,

19.6 million Symbian mobile phones have been shipped globally. The amount in-

creased by 5% from the same period of 2007 [4]. Smartphones in addition to tra-

ditional call and messaging functionality comprise a set of rich media applications

making them similar to PCs in functionality. However, performance and usability

of mobile applications are still a big concern. This is especially true with technolo-

gies initially designed to run on PCs. The contribution of this part of our work is

evaluation of applicability of existing IP security and mobility solutions for smart-

phones. In addition, by developing Symbian ports of two HIP implementations we

also contribute to the deployment of HIP. Our porting experience might be useful

for those planning to bring open source software to Symbian OS.

The rest of this chapter is structured as follows. Section 7.1 describes our ports of

HIPL and OpenHIP implementations. In Section 7.2 we present our experimental

8 c© 2009 IEEE. Used with permission.

50

51

network testbed followed by description of scenarios and measurement tools in Sec-

tion 7.3. Section 7.4 contains selected measurement results of the base protocol and

their in-depth analysis. Section 7.5 concludes the chapter with a summary of key

findings and conclusions.

7.1 Main porting stages to Symbian

In this section we describe the key parts of the HIPL and OpenHIP porting pro-

cess and challenges that we faced while migrating to the Symbian platform. We

also present limitations of our prototypes. The porting process comprised several

stages such as choosing the development environment, examination of the existing

HIPL and OpenHIP source code, preparation of the Symbian project structure and

makefiles, compilation, debugging and testing.

7.1.1 Development environment

We started with no prior knowledge and experience of Symbian OS. To begin porting

process we needed to install an S60 3rd Edition Platform SDK for Symbian OS, a

Carbide.c++ IDE and an Open C SDK plug-in for S60 3rd Edition SDK. The

Open C plug-in brings support of nine standard POSIX and middleware C libraries

to Symbian OS and allows easier porting of the existing C applications to S60 3rd

Edition devices [27]. The availability of Open C plug-in played an essential role

in our project as it provided access to many standard C functions and allowed to

reuse the existing HIP implementations avoiding extensive modifications. Without

support of POSIX C libraries it would not be feasible to port the project written

in C without rewriting the major part of the code using the Symbian’s native C++

programming language.

7.1.2 Project preparation

Before actual porting it is necessary to study existing software, its features and

dependencies, and identify potential limitations of the target platform. To import

the HIPL and OpenHIP code to the Carbide IDE and start working on the project

we created a set of Symbian project files, bld.inf and mmp, which are platform and

compiler independent files in Symbian OS. To create these files we studied existing

Linux makefiles in the HIP projects. An mmp file contains all necessary information

needed to build a component or a project. Application type (e.g., dll, exe), source

52

files, include directories, libraries, preprocessor macros, compiler and linker settings,

stack and heap size, program capabilities and many other options are specified in

the project definitions files mmp. A bld.inf file in turn comprises information about

project mmp files, exports, and build platforms (e.g., WINSCW, GCCE). Having

prepared the project files, one can build the project for different Symbian platforms

and compilers.

For OpenHIP we chose a set of source files needed to run HIP in userspace mode,

since we believed that this mode should be compatible with any platform that

supports standard POSIX C libraries. We also included implementation of security

association database (SADB) and PFKEY [68] protocol (with BEET mode support)

for communication with SADB.

7.1.3 Compilation

The most common cause for compilation errors in the code was implicit data type

conversions. Symbian compiler needs an explicit type casting to be performed.

Furthermore, the Symbian compiler does not allow declaration of data types in the

middle of a function. To avoid the compilation errors we had to add a number of

extra definitions to the Open C header file netinet6/in6.h for HIPL project.

OpenHIP architecture, in turn, was better suited for porting. In fact, we did not

change any system headers. Similarly with HIPL, we have been using preprocessor

logical statements to separate system-specific code parts, and in case of missing

functionality reimplemented it.

7.1.4 Debugging

When debugging the HIPL code we found a number of porting issues that arose only

during execution of the HIPL daemon. The errors were caused by a difference in

Linux and Symbian emulator compilers. The most interesting issues were detected in

data structures that contain an array of zero elements. The first error type concerned

the size of such structures. In Linux, a structure member declared as an array of

zero elements (e.g., uint8 t data[0]) does not increase the size of whole structure.

On the contrary, the size of the same structure in the Symbian emulator was bigger

due to the size of the ”null” array treated by the Symbian emulator compiler as one

byte.

The second error type was related to memory alignment. Upon referencing arrays

of zero elements in a structure, the program running on Linux and on Symbian

53

emulator tried to access different memory blocks within that structure. Interestingly,

we found that the Symbian compiler always rises the total size of the structure

elements preceding a ”null” array to an even value by adding an extra memory byte.

As a result, to access a correct value recorded in the ”null” array we had to shift

the pointer appropriately. The piece of the code below illustrates this issue with a

particular example. Here, the size of the structure members group id and pub len

is 3 bytes, and Symbian compiler adds an additional 8 bits of memory prior to the

member public value.

struct hip dh public value {

uint8 t group id;

uint16 t pub len;

uint8 t public value[0];

} attribute ((packed));

It is worth mentioning that this specific feature has been detected only with the

mwcsym2 compiler that is used with the Symbian emulator. When the HIPL code

was built for the target hardware with the GCCE compiler, the program behaved

similarly as on Linux and all the changes we have made for the emulator needed

to be restored. We did not find an explanation of such a difference between the

compilers in the technical documentation.

7.1.5 Limitations of the prototypes

Both HIP implementations are entirely written in C and consist of a HIP userspace

daemon and several HIP libraries. As the HIPL project was originally developed for

Linux, the implementation contained several platform-dependent features such as

the NETLINK socket for kernel and userspace communication. To protect payload

data, HIPL uses the IPsec protocol that resides in Linux kernel. Due to limited

public Symbian SDK and restricted access to Symbian network stack, our HIP pro-

totypes for Symbian support only the base protocol part without ESP encapsulation

of data packets in the system kernel. However, with OpenHIP we ported a userspace

alternative – PFKEY protocol and SADB. As a result, we were able to successfully

encrypt/decrypt UDP encapsulated incoming ESP packets.

Open C plug-in itself has a set of limitations that required us to modify the existing

source code and disable a part of its functionality. Examples of unsupported or

restricted features in Open C are signals, fork() and exec(), wait() and waitpid()

54

Table 7.1: Technical specifications of tested phone models.

Smartphone Models → E60 N80 E51

CPU Clock Rate, MHz 220 220 369

SDRAM / Free Exec RAM, MB 64/21 64/18 96/50

Battery Capacity, mAh 1020 860 1050

functions, multiple I/O consoles [26]. Because of Open C constraints our HIP

ports for Symbian use only UDP sockets to send HIP control packets excluding a

raw-socket alternative as in the original HIP software. In OpenHIP, we used UDP

encapsulation also for ESP packets, so that the raw socket limitation can be bypassed

for ESP as well. The architecture of OpenHIP allowed us to support almost full-

featured HIP implementation on Symbian OS. However, to run legacy applications

over HIP an equivalent of Linux TUN/TAP driver needs to be implemented.

The HIP code ported to Symbian OS requires NetworkService system capability,

which identifies a functionality for remote access to services that can produce cost

to the phone user, such as network usage. Both HIP implementations compiled for

the target hardware were signed with enabled NetworkService capability against a

specific phone International Mobile Equipment Identity (IMEI) number and, with-

out recompiling, cannot be used on any other S60 3rd edition mobile phone. To

install the HIP daemon on another phone one has to sign the package with its own

IMEI number at www.symbiansigned.com.

7.2 Our testbed

We have tested HIPL and OpenHIP code running on several Symbian phones:

Nokia E60, Nokia N80, and Nokia E51. The first two devices are based on

S60 3rd Edition platform and Symbian OS v9.1, whereas Nokia E51 is a slightly

newer and more powerful smartphone that runs Symbian OS v9.2 and uses

S60 3rd Edition Feature Pack 1 developer platform.

The general specifications of the tested phone models are summarized in Table 7.1.

Nokia E60 has equivalent to N80 hardware resources and shows similar performance.

55

To obtain competitive results we measured HIP performance on a more powerful

Nokia E51 phone equipped with a 369-MHz ARM11 CPU and a notably bigger

RAM module of 96 MB. All phone models support IEEE 802.11 b/g connectivity

standards with WPA2 encryption and a number of cellular standards including

WCDMA, EGPRS, and HSCSD. Battery capacity in all phone models we used

varies from 860 to 1050 mAh.

We measured the performance of HIP over WLAN. Our experimental network con-

sisted of a D-Link DGL-4300 access router, three mobile phones, and an Intel(R)

Xeon(TM) server with a 3.2-GHz CPU and 2 GB of RAM. The server was placed

into the same network as cellular phones. The experimental testbed was similar to

the one presented in Figure 6.1 except that Nokia Internet Tablets were replaced

with Symbian smartphones.

7.3 Scenarios and tools

In basic scenarios, we established a HIP association between each of the Nokia

phones and the server. We evaluated each stage of the base protocol separately

including HIP daemon initialization, asymmetric key pair creation, daemon idle

time, and protocol handshake (HIP base exchange). In the thesis we mainly re-

port results obtained on Nokia E51 that showed better performance than two other

models. Where possible we refer to the respective performance metrics measured

on Nokia N80 and E60.

With Nokia E51, we utilized Nokia Energy Profiler, a convenient tool that runs on

the phone in background and allows monitoring hardware usage in real time, as well

as exporting data to a PC for future analysis. Profiling data includes information

about such parameters as power and memory consumption, and CPU load.

With Nokia E60 and N80, we used Carbide.c++ Performance Investigator to collect

and analyse data about usage of different resources. Performance Investigator con-

sist of a profiler that gathers profiling data to a file during application runtime, and

an analyser that runs on a PC and handles profiling data. Profiling data includes

information about processes, threads, binary load, memory and power consumption.

7.4 Performance evaluation

This section presents and analyses the results of our measurements with the Host

Identity Protocol on Symbian OS obtained with HIPL and OpenHIP prototypes.

56

Table 7.2: Base exchange duration with HIPL and OpenHIP.

Nokia E51 Median/Average±Stdev (sec)

↓ Scenario/Implementation → HIPL OpenHIP

Phone→Server (Active) 3.21/3.17±0.11 3.05/3.09±0.17

Phone→Server (Standby) 1.66/1.68±0.06 1.93/1.90±0.12

Server→Phone (Active) 3.34/3.31±0.10 2.74/2.76±0.11

Server→Phone (Standby) 1.73/1.76±0.14 1.84/1.85±0.07

Phone→Phone (Active) 6.71/6.42±0.71 4.30/4.30±0.07

Phone→Phone (Standby) 3.83/3.78±0.13 3.49/3.50±0.12

7.4.1 HIP base exchange duration

In this section, we analyse HIP handshake duration in different scenarios. Surpris-

ingly, we found a significant difference in HIP base exchange performance measured

in active and standby phone states. We use terminology from [25] and slightly mod-

ify it. We call a phone state active when its display is switched on and refreshing

(with backlight either on or off). In turn, we call a phone state standby when its

display is in partial refresh (backlight is off; either date and time, text or animation

is shown).

As Table 7.2 indicates, the total average time for HIPL base exchange initiated from

the E51 phone to the server equals 3.17 seconds in the active phone state. Switching

the phone to the standby mode reduces HIP base exchange duration almost twice

(1.68 seconds). We believe the reason for such a great difference in performance

is that in the standby mode no graphics are drawn and display is not refreshing,

which releases extra CPU cycles that are utilized by the HIP daemon. On the other

hand, in the active phone state, the processor load is close to 100% due to constant

display refreshing, which prolongs processing time by the HIP daemon; we observed

such behaviour by activating and deactivating the phone screen with running Nokia

Energy Profiler.

The scenario with E51 as a HIP initiator is more natural for the Internet where most

of the connections are initiated from mobile clients to servers. In the opposite direc-

57

tion (server → phone) duration of the HIPL handshake slightly rises and becomes

3.31 seconds in the active and 1.76 seconds in the standby state (see Table 7.2).

Thus, time variation of the HIP base exchange performed in two opposite directions

is insignificant. In our previous study [54] we obtained similar performance results

with merely equal HIP handshake duration measured in two directions between a

Nokia 770 Internet Tablet and a server. Further comparison to our previous work [54]

indicates that the HIP base exchange performance on Linux-based Nokia 770 In-

ternet Tablet is better than on Symbian-based Nokia E51 smartphone (1.40 versus

1.68 seconds), although the latter has more CPU and RAM resources. We explain

this phenomenon as an impact of the Open C plug-in that is used with our Symbian

HIP ports to wrap C function calls to native Symbian APIs.

Further analysis of the results in Table 7.2 indicates that the OpenHIP implemen-

tation shows slightly better performance than HIPL in the active phone state es-

tablishing a HIP association between the E51 and the server on the average during

3.09 seconds and in the opposite direction in 2.76 seconds. Though the effect of

standby state in OpenHIP case is less significant than with HIPL (OpenHIP 35%

against HIPL 47% time decrease when switching to standby mode).

A large part of the Internet traffic nowadays is generated by P2P applications.

Keeping that in mind we measured HIP implementation performance running on

two mobile phones. Our preliminary tests show (see Table 7.2) that two Nokia E51

smartphones in standby state are able to establish a HIPL association in 3.78 sec-

onds and an OpenHIP association in 3.50 seconds. Switching to the active mode

significantly increases the HIP handshake time for HIPL (6.42 seconds) while not

seriously affecting OpenHIP (4.30 seconds).

Although it is interesting to know the HIP base protocol performance level in the

standby phone state (i.e., when the HIP daemon is implemented as an engine and

runs in background) we have to rely on the results obtained in the active state.

This is because we expect user to interact with mobile phone (thus, activating the

display) while using applications that might benefit from HIP.

7.4.2 Asymmetric key pair creation

Table 7.3 includes the median duration of creating a public-private key pair of

different size on the Nokia E51. The results indicate an exponential growth of the

key pair generation time with increasing the key length. With the conventional

1024-bits keys, the median time to generate an asymmetric DSA key pair on E51 is

25.4 seconds. The generation of an equivalent RSA key pair is much faster with the

58

Table 7.3: Creation of a key pair of different size on the Nokia E51.

Median time (sec)

↓ Algorithm / Key (bits) → 512 1024 2048

DSA 4.9 25.4 232.1

RSA 0.52 3.7 27.1

median time 3.7 seconds. It is worth noting that the use of the keys with the length

over 1024 bits) would produce a delay of almost four minutes with DSA and half a

minute with RSA.

One might argue that keys are needed to be created only once, i.e., upon installing

HIP and this would not affect the overall phone performance in the long run. Never-

theless, we find stressing of a mobile phone even for a short period to be inconvenient

and slowing down the phone’s operations when its normal functionality is crucial

(as with emergency calls). According to our practical experience, the generation

and usage of lengthy keys on mobile phones with lower amount of RAM and CPU

power, such as E60 or N80, seriously affect the handset performance and can make

the phone completely unresponsive for several minutes.

Long generation time of a public-private key pair on the Nokia E51 illustrates the

necessity to look for different approaches for managing the keys on mobile phones.

One approach can be to generate the keys on a PC and securely transfer them to a

phone. This can be performed by the phone’s user assisted by an application either

supplied with the mobile phone or available elsewhere. Another approach can be to

precreate the keys for a mobile phone and transfer them to the device before it is

sold. In this case, any additional user actions are avoided. Further details on the

key distribution on mobile devices are left outside of this work.

7.4.3 CPU load

In this and the following subsections we report on the indicators of hardware uti-

lization that were collected with the Nokia Energy Profiler on the Nokia E51.

The CPU Load during the HIPL daemon initialization and asymmetric key pair

59

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

C
P

U
 lo

ad
 (

%
)

Elapsed time (seconds)

Figure 7.1: HIPL daemon initialization. CPU load on E51.

creation on E51 is presented in Figure 7.1. Most of the 2-minute measurement period

the CPU load stays at 100% and this corresponds to the daemon initialization (up to

the 12th-second timestamp) and the generation of four different public-private key

pairs (the interval from 12th to the 104th second). The rest of the graph (from the

104th second onwards) has several peaks that account for precreation of the HIP R1

packets. In idle time the HIPL daemon does not consume much of processor power.

We also noticed that switching the phone to the active state significantly rises the

CPU load. The CPU utilization with the OpenHIP implementation is similar to the

HIPL case.

7.4.4 RAM usage

Although each mobile phone has certain amount of RAM memory, only a part of it

is available to applications. For example, on the Nokia E60 only 21 out of 64 MB

are available to the executables. The rest of the memory is reserved for the exclusive

use by the system. This reduces the number of the user applications that can be

simultaneously ran on the device. According to our profiler data, the memory usage

60

 35.5

 36

 36.5

 37

 37.5

 38

 38.5

 39

 39.5

 0 10 20 30 40 50 60 70 80

M
em

or
y

(M
B

)

Elapsed time (seconds)

Figure 7.2: OpenHIP daemon initialization with BEX. RAM usage on E51.

on the N80 phone stays on the level of 20 MB during the HIPL daemon initialization,

the key generation and the HIP handshake. Note that this value depicts the overall

memory use by all running applications. Assuming that other applications are in the

idle state, we can figure out the memory use by the HIP daemon. On the Nokia E51,

the memory use dynamics are almost the same as on N80. The only difference is

the amount of available RAM, which is larger on E51. According to the technical

specifications, E51 allocates to the applications approximately 50 MB out of the

total 96 MB of RAM.

Figure 7.2 depicts the RAM usage by the OpenHIP implementation on the

Nokia E51 during the daemon initialization and the BEX. The reader should take

into consideration the fact from the previous paragraph and notice that the graph

shows the overall memory consumption by all applications. In fact, HIP starts its

initialization at the point of approximately 36 MB. The time interval from the 8th

to the 50th second corresponds to the key creation and serialization. Since Open-

HIP stores all precreated keys in RAM (as well as serialized to the file system), the

memory use increases by 3 MB. However, later during the base exchange and the

idle time (the time interval from the 50th to the 80th second), the memory usage

61

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20 40 60 80 100 120

P
ow

er
 (

W
at

t)

Elapsed time (seconds)

Figure 7.3: HIPL daemon initialization. Power consumption on E51.

does not grow drastically but only increases by half a MB during the processing of

the BEX packets (which is freed afterwards) and adding the SAs to the SADB. In

fact, the total RAM usage of 3 to 4 MB by the protocol is within the normal bounds

and should not stress the performance of a mobile phone. Hence, from the RAM

utilization prospective both HIPL and OpenHIP could be run on a Symbian mobile

device without major changes to its architecture.

7.4.5 Power consumption

Figure 7.3 illustrates the power consumed by the E51 phone with the running HIP

daemon during its initialization and idle time. The value of 0.62 Watt represents the

average consumed power over a 2-minutes measurement period. The peaks on the

graph between the 8th second and the 53nd second timestamps show the maximum

power consumption over the measurement period and they account for the creation

of two DSA and two RSA key pairs.

To compare how HIP affects the battery life of the phone we measured the average

power consumption while the phone was in ”normal” use (i.e., no HIP daemon was

62

running) and with the HIP daemon doing the base exchange. As a result, we ob-

tained 222 mW/60 mA and 333 mW/90 mA on the average respectively, which after

the extrapolation corresponds to 18 and 12 hours of a 1050-mAh battery lifetime.

In reality, the constant exchange of the HIP control packets is abnormal behaviour

of the HIP daemon, so the purpose of these results is rather to illustrate an instant

power consumption by the cryptography operations constituting the BEX.

7.5 Summary of the results

This chapter presented measurements and performance evaluation of two separate

Host Identity Protocol implementations on Symbian OS. Below we summarize the

most interesting and important results that at the same time can serve as recommen-

dations on the use of public-key cryptography on lightweight Symbian OS mobile

phones.

• A single HIP base exchange between the Nokia E51 and a proxy server lasts

for 1.7-3.2 seconds on the average depending on the phone state (active or

standby).

• In turn, two Nokia E51 require 3.5-6.4 seconds on the average to establish a

HIP association.

• The public-private key pair generation might stress the phone and make it

unresponsive for up to four minutes, especially with the key length greater

than 1024 bits. However, this issue can be addressed by several alterna-

tive approaches such as predistributing the keys before the device is sold or

generating the keys on a PC and transferring them to the mobile phone.

• Key creation boosts the CPU utilization and consumes a notable amount of

power but otherwise the HIP daemon in the idle state consumes few resources.

The impact of the WLAN transmission on energy consumption has to be

considered separately.

• The OpenHIP implementation had been easier to port and showed slightly

better performance over HIPL.

• Better performance results could have been achieved if HIP was implemented

using the native Symbian C++ APIs rather than the Open C plug-in. This is

because Open C is a wrapper to the native Symbian APIs and, thus, produces

63

an additional overhead comparing to the native applications. However, it

should be noted that this remark is rather based on common sense, and we

cannot provide any numbers illustrating the level of the potential performance

increase.

8 Security and Mobility in Wireless LANs

In the previous chapters we evaluated performance of the Host Identity Protocol

for two types of the resource-constrained mobile platforms (a Linux PDA and a

Symbian smartphone). In this chapter, we present a more general view on similar

problems of security and mobility, and expand our analysis and evaluation from

the end user devices towards an ecosystem, where communications of such devices

with other components of the infrastructure need to be secure. In particular, we

consider WLAN networks, which have recently become a common way to access the

Internet, and address the following issues: authentication and access control, host

mobility and multihoming, communication security and prevention of several types

of external attacks on the operator’s infrastructure.

In the following sections, we first highlight several essential bottlenecks of WLANs

and explain our motivation and then introduce our own distributed authentication

architecture intended to prevent wireless networks from unauthenticated access,

impersonation and network abuse, data interception and different types of attacks.

In addition, we evaluate performance of selected architectural components based on

the measurements in a test network. The chapter is mainly based on the article

Distributed User Authentication in Wireless LANs9 [61].

Our architecture utilizes several benefits of the Host Identity Protocol. It integrates

an operator-specific HIP proxy with a HIP-aware firewall running on each of the

operator’s WLAN access routers (ARs) so that the mobile clients can instantly gain

WLAN access and move freely within the operator’s network. To build our ar-

chitecture, we have implemented a port of the HIPL protocol implementation to

run on OpenWrt WLAN ARs. We analyse measurement results obtained on two

types of ARs with highly varying resources, La Fonera FON2100 and Gateworks

Avila GW2348-4. Performance evaluation suggests that a two-level approach con-

sisting of a single HIP proxy server and a distributed HIP firewall is appropriate,

given limited hardware resources of some WLAN ARs. The presented architecture

is planned to be deployed in panOULU [3], a public city WLAN in Finland.

The rest of this chapter is structured as follows. Section 8.1 discusses the issues with

existing wireless networks and states the objectives we aim to achieve with our ar-

chitecture. Section 8.2 presents our distributed WLAN authentication architecture.

In Section 8.3 we describe our port of the HIPL implementation to OpenWrt plat-

form and experimental testbed used for our measurements. Section 8.4 contains the

9 c© 2009 IEEE. Used with permission.

64

65

measurement results of CPU and memory utilization on two different AR models.

Section 8.5 concludes the chapter.

8.1 Motivation

An increasing number of laptop and smartphone users utilize WLANs for Internet

access at work, home, and public places. Unfortunately, authentication mechanisms

in WLANs remain cumbersome, unreliable and disruptive to users. Typically, the

WLAN users are required to re-enter their login and password periodically through

a captive web page, or manually configure the WPA keys or 802.1X settings. The

owners of open WLANs risk to fall under police investigation in case of network

misuse.

Open wireless networks (such as presented in Figure 8.1) usually have no mecha-

nisms for access control, protection of data integrity and confidentiality. The core

of the problem is that anyone can gain access to the network without providing

and validating their identity. This allows an attacker to perform illegal actions and

potentially cause damage to the infrastructure without being caught. On the other

hand, publicly available WLANs usually use no encryption, hence all the traffic

transmitted over the air can be easily sniffed, analysed and used for malicious pur-

poses. To eliminate such risks, we need the mechanisms that would provide reliable

data protection and access control.

Several trends make the situation harder with time. Some emerging devices, such

as smart key chains, are being equipped with WLAN capability, although missing

a screen to display and enter login information. Furthermore, recent advances in

breaking WPA encryption 10 and 802.1X 11, necessitate to look for far robust IP-layer

encryption over the wireless link.

The above issues have been addressed in a number of research projects resulting in

several potential solutions (e.g., [58, 8]). However, none of the methods achieves all

of the following properties at the same time: 1) disruption-free user authentication

2) protection of operator’s infrastructure from external attacks 3) host mobility and

multihoming 4) IPsec encryption over the wireless link.

10Researchers Crack WPA Wi-Fi Encryption, http://it.slashdot.org/article.pl?sid=08/
11/06/1546245

11802.1X vulnerabilities, http://www.microsoft.com/technet/community/columns/

secmgmt/sm0805.mspx

66

Figure 8.1: Open network access model.

8.2 Distributed authentication architecture

In this section we present our approach for automatic WLANs authentication ac-

cording to the design goals stated in the previous section. We start by describing

the main architectural components and principles, proceed with discussing the ap-

proaches for synchronization of the distributed firewalls, then highlight several ideas

on the rule management and finally mention a number of potential methods for

subscribing to the service.

8.2.1 Architectural components and principles

The general view of our architecture is shown in Figure 8.2. We propose to utilize

HIP as a backbone that supports client mobility and multihoming in addition to

WLAN authentication. A HIP-enabled mobile client establishes a secure association

67

Figure 8.2: Distributed authentication model.

with a central HIP proxy installed on the default gateway in the core network. User

data is then protected by the ESP secure tunnel. HIP and IPsec associations are

updated when the client moves to another location within the network. Another

role of the central HIP proxy is to enable connections from the mobile HIP clients to

the remote servers in the Internet that do not understand HIP. In a simple scenario,

the HIP clients connect to the non-HIP Web servers through an HTTP/HIP proxy

to secure their browsing sessions.

To solve the authentication problem, we introduce a set of interconnected HIP-aware

firewalls called the distributed firewall (see Figure 8.2). The main purpose of a HIP-

aware firewall is to filter traffic based on a predefined list of allowed Host Identity

Tags (HITs) that authenticate clients to the operator. Additionally, the firewall can

perform a digital signature check (as, for instance, in PISA project [37]).

68

Checking the signatures provides a higher authentication level but involves the cryp-

tographic operations. The overhead can negatively affect the overall data through-

put of the firewall and reduce the number of clients served with a reasonable QoS

level.

HIT-based filtering can be sufficient for a WLAN network when a client connects to

the Internet through the central HIP proxy. Even if an attacker is able to generate

a valid HIT, it would fail to complete the HIP base exchange after receiving an

R1 packet (due to lack of knowledge of a private key). After a HIP association

is established, ESP traffic is filtered using SPI values stored from the HIP base

exchange.

However, in a scenario where a mobile client communicates with another mobile

client in the same WLAN network, an attacker has chances to replay the HIP control

and the ESP packets (sent between two mobile hosts) and establish a communication

with another attacker within the same network, thus using the network resources

on behalf of the legitimate clients. To eliminate such risks we suggest to use an

extension for client authentication and authorization at the middleboxes proposed

by Heer et al. [36]. In our architecture, the Wi-Fi ARs would play the role of the

middleboxes that can authenticate the HIP and ESP packets transmitted between

two mobile clients in the same WLAN.

8.2.2 Synchronization of firewalls

Distributed HIP firewalls are placed on the edge of the wireless network and perform

packet filtering based on the predefined access control list (ACL). In other words,

traffic from a registered HIT can successfully pass through the firewall and flow

to the core network. In such an architecture, all participating Wi-Fi ARs (HIP-

aware firewalls) should maintain a fresh copy of the rules, so that a newly registered

customer can pass authentication successfully anywhere within the WLAN coverage.

Synchronization of the ACLs needs to be efficient. The lists should be updated

frequently without flooding the network with signaling traffic. In this paper we are

not proposing any specific protocol for synchronization but offer a general architec-

ture overview and suggest the following two approaches for synchronizing the ACLs

between the firewalls:

• First, a firewall can store the complete ACL locally and query the central

policy coordinator server on-demand (when no matching rule is found locally)

69

Algorithm 1 ACL synchronization algorithm.

Require: certificate 6= NULL

Require: addressserver 6= NULL

if authenticate(certificate, addressserver) = TRUE then

updateACL(addressserver)

resetStatsForNewEntries()

sortACLbyStats()

else

reportError()

end if

or at fixed intervals (this approach will cause a higher network load). A

request will update the list of allowed HITs.

• Second, the AR firewalls can form a peer-to-peer network (for instance, using

a DHT). Each AR would store a partial list of allowed HITs and perform on-

demand queries to the overlay if the matching rule is not found locally.

For the first approach, we assume that a centralized policy coordinator is present

in the network (in Figure 8.2 it is placed on the gateway). Such policy coordinator

holds the current list of the allowed HITs (or a user registration database). A simple

ACL synchronization protocol is exemplified in Algorithm 1.

To synchronize the ACLs, an AR is required to authenticate itself to the central

server with a certificate, or using other available mechanisms. Upon successful

registration, the AR merges the ACL with the new updates.

8.2.3 Rule management

With linear search, the packet filtering time on a Wi-Fi AR firewall depends on

the position of the appropriate rule in the ACL. Classifying and matching a packet

takes Θ(n) time in the worst and O(1) in the best case, where n is the number of

the rules in the ACL. Our initial experimental results with packet filtering time on

Avila confirmed the need to employ a rule management technique to achieve better

filtering performance than that provided by pure linear search.

A simple strategy to sort the rules in the ACL may involve collecting per-packet

statistics and trying first the most frequent rules. An alternative solution can be

a hash table that guarantees O(1) search time. However, this will constrain the

70

flexibility of the rules and restrict the search criteria to only one key, e.g., the source

HIT. Such approach might successfully work in a simple setup, but more flexible

systems would require a more comprehensive algorithm. The hash table approach

might be infeasible if the ACL controls the number of the remote servers the user

is allowed to access. In this case, each rule in the ACL needs to have a destination

HIT. However, a hash table cannot provide filtering based on multiple criteria. Yet

another approach for matching the rules is to use tries and ternary trees. For our

architecture, we do not specify any particular method for ordering and matching

the rules. In fact, this is a general topic, which has been extensively studied in the

literature [7, 30, 45, 99].

8.2.4 Service subscription

Prior to the first-time connection to an operator’s WLAN, a client in our architecture

is supposed to perform a registration or, in other words, to subscribe to the service.

The registration has to be done in a secure way, resulting in authenticating the client

to the operator and storing the mapping between the user identity and her HIT in

a registration database. The registration database is then synchronized among all

firewalls. In practice, there might be several alternative methods to accomplish this

procedure, including registration in person at an office by providing an identity card;

subscription to the service in the Internet using a banking authentication service;

registration by mobile phone or via email. Each mechanism has its own advantages

and disadvantages. More details on the different subscription methods can be found

in the literature. For instance, Kuptsov and Gurtov [60] describe a simple web and

email-based registration system. In general, the design of such systems needs to

have a good trade-off between the security and the convenience of usage.

8.2.5 Compatibility with legacy clients

A large-scale deployment of our architecture can require a transition phase, when not

all of the mobile clients will understand HIP. In this section, we consider two possible

approaches to provide backward compatibility to the legacy clients in the early

deployment stages. Both approaches require support of legacy and HIP-enabled

clients in the WLAN ARs.

In the first approach, we can run a HIP proxy on a WLAN AR. This proxy would

provide support for non-HIP (legacy) clients by translating the plain TCP/IP data

to the HIP and ESP traffic. In this case, the WLAN AR would need to perform the

71

HIP base exchange and IPsec encryption (between the AR and the central network

gateway). Our measurement results in Section 8.4.2 indicate that this approach is

inefficient for a resource-constrained WLAN AR due to its computational overhead.

It limits the serving capacity of the WLAN ARs and the scalability of the whole

architecture.

A more rational approach to deal with the legacy clients is to perform a simple port

switching on the Wi-Fi ARs and thus decrease the load on the infrastructure. As

the use of the HIP proxy on the ARs does not deliver any additional benefits other

than supporting the legacy clients, it makes sense to replace it with a port switching

technique.

An example of such setup is illustrated in Figure 8.2. An AR routes the traffic from

a HIP-enabled client towards the central HIP gateway establishing a secure tunnel

and filtering the HIP and ESP packets on the HIP-aware AR firewall. At the same

time, a legacy mobile client is routed by the same AR to a demilitarized network

zone and can be served with a lower QoS level (depending on the network policy).

8.3 Experimental testbed

This section presents our experimental testbed. It starts with a description of the

HIP on Linux (HIPL) [1] porting process and highlight the challenges that we con-

fronted during migration to the OpenWrt platform. Next, we show the components

of our network setup and introduce the status of the architecture deployment in the

panOULU WLAN.

8.3.1 Porting HIPL to OpenWrt

We ported the HIPL implementation to two AR models, La Fonera FON2100 and

Gateworks Avila GW2348-4, both running the OpenWrt Linux distribution.

Porting of HIPL to the OpenWrt platform was not a straightforward process and

required efforts with both AR models. Among the problems we faced were various

memory management issues, missing dependencies, and hardware constraints. We

have chosen OpenWrt as a reference Linux distribution because of its wide range of

supported hardware platforms. Fortunately, OpenWrt is known for its good support

of FON and Gateworks boards. Another consideration was a large and growing

community of developers that work on the OpenWrt project.

72

During the HIPL software migration to OpenWrt we detected several critical bugs

that were hard to locate and eliminate. Besides that, we rewrote a number of

parts of the HIPL code completely to avoid library dependencies. For instance, we

needed to reimplement the list data structures to remove glib library dependencies.

Interestingly, the HIPL code running on ARM processor (Avila) required static

typecasting to the character pointer type for memory copy operations. Otherwise,

we were getting ambiguous results; as an example, we have observed that copying

of the in6 addr structure would copy correctly only 96 bits and fill the rest of the

structure with zeroes.

As a summary, porting of the current HIPL implementation to other architectures

supported by the OpenWrt platform should be feasible, but researchers can en-

counter problems related to a specific platform. Since HIPL is not included in the

OpenWrt distributions, it should be compiled with an OpenWrt SDK and the HIPL

patches that are publicly available.

8.3.2 Experimental setup

Our network setup (see Figure 8.2) comprised a set of the Wi-Fi ARs running a HIP-

based distributed firewall. The first AR model we used was La Fonera FON2100 that

has 16 MB of RAM, 8 MB of Flash memory, and a 32-bit MIPS processor running

at 183 MHz. The second model, Gateworks Avila GW2348-4, is more powerful than

the previous one, combining on an average-sized board 128 MB of RAM, 32 MB of

Flash, and a 533-MHz Intel CPU.

Another component of the implemented architecture was a central HIP proxy server,

a desktop-like PC, that acted as the main gateway for the whole WLAN network

connecting it to the Internet. In addition, the testbed included a remote peer

and a number of mobile clients ranging from a Nokia 810 Internet Tablet and a

Symbian S60 smartphone to a mini-laptop ASUS Eee PC 901. There were both

HIP-aware and non-HIP hosts among these mobile devices. The clients used two

publicly available HIP implementations, HIPL and OpenHIP [2]. All components of

our experimental testbed for distributed user authentication in a wireless network

are illustrated in Figure 8.2.

8.3.3 Considerations for deployment

Our system works in a way that the HIP-enabled users establish an association with

the central HIP proxy server by performing a HIP base exchange. Each packet

73

sent from a mobile client is filtered by the distributed firewall running on the HIP

Wi-Fi ARs based on the source and destination HITs. Such scenario provides mul-

tiple benefits, including strong user authentication to the WLAN network and HIP

terminal mobility. In addition, all transmitted data is protected by IPsec.

On the other hand, if there is a need for an incremental architecture deployment in

a large public WLAN network, such as panOULU, our architecture can be easily

extended to provide backward compatibility for the legacy clients. This can be

realized by a simple port switching technique on the Wi-Fi ARs as described in

Section 8.2.5.

Ideally, we recommend to deploy the complete architecture at once so that each

WLAN user becomes HIP-aware and is able to authenticate itself to the network.

We believe that universal client authentication would significantly reduce the prob-

ability of a network abuse. However, we admit that in practical situations for large

operator environments an incremental deployment is more feasible. In such cases,

the operator may provide backward compatibility for a certain transition period

needed to install HIP on the legacy client terminals.

8.3.4 Deployment status in panOULU

Deployment of our authentication architecture in panOULU, a city-wide WLAN

in Finland, is in its initial phase. We have installed an HTTP/HIP proxy on the

main network gateway. The proxy allows the mobile clients understanding HIP to

establish secure HIP associations with the central gateway. The proxy authenticates

the clients to the network, provides terminal mobility and encrypts user data over

an unprotected wireless link. Our preliminary tests showed that a mobile HIP user

can successfully connect to the panOULU network, secure the browsing sessions by

constructing an IPsec tunnel with the central HIP proxy server and keep the sessions

ongoing while changing the network attachment point.

As the next step, we added a La Fonera FON2100 AR to panOULU with the running

HIP firewall and proxy extensions. Initial experimentation indicated that limited

hardware resources of this AR model are stressed by the HIP proxy component that,

in turn, is not able to serve many clients simultaneously. In the future, based on the

performance comparison of different Wi-Fi AR models, we plan to choose the most

suitable hardware and continue deployment of our architecture in the panOULU

network.

74

8.4 Performance evaluation

This section presents our initial measurement results on two Wi-Fi AR models with

different hardware resources, La Fonera FON2100 (from now onwards Fonera) and

Gateworks Avila GW2348-4 (from now onwards Avila). The results have been

measured in two modes with each AR running as a HIP proxy and a HIP firewall.

HIP involves public-key cryptography and IPsec encryption that can easily stress

lightweight resources of Wi-Fi ARs. One of our objectives was to evaluate the impact

of such computationally-intensive operations on the performance of our authentica-

tion architecture. Our previous work [54, 53], which studied HIP performance on

the Linux-based Nokia Internet Tablets and Symbian smartphones, served as a good

reference for performance evaluation in this article. In addition, HIP has been evalu-

ated on stationary Internet hosts with conventional PC-like resources [40, 38, 48, 87].

We have made an interesting observation that 100% CPU utilization does not nec-

essarily indicate a performance issue for a particular mobile device. Rather, this can

be interpreted as the utilization of all available resources by running applications

when the system allocates maximum capacity to them. We have noticed that when

all applications are in the idle state, the CPU utilization is about 1%. However,

upon invoking a resource-demanding application, the system will release all available

CPU cycles to it. On the other hand, with multiple applications running in parallel,

the Linux scheduler guarantees no starvation for each task by fairly allocating the

time slices.

8.4.1 Firewall mode

This section contains an analysis of our measurement results on Fonera and Avila

running in the HIP firewall mode.

A HIP-enabled firewall on a Wi-Fi AR does not require running the HIP daemon,

unless the HIP daemon itself is used for user registration or similar tasks. In our

experiments, we ran only the HIP-enabled firewall as the crucial component in our

architecture.

Figures 8.3a and 8.3b illustrate the copying task of a 30-MB file over SSH and HIP,

while the traffic was being filtered on the Wi-Fi access routers in the middle. The

ACL on the Wi-Fi AR contained four rules. The first peak on both graphs (the

time interval from the first to the sixth second in Figure 8.3a; the time interval from

the first to the fourth second in Figure 8.3b) corresponds to the HIP base exchange

75

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

C
P

U
 L

oa
d

(%
)

Elapsed time (seconds)

CPU load (overall)
CPU system

CPU user

(a) Fonera

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

C
P

U
 L

oa
d

(%
)

Elapsed time (seconds)

CPU load (overall)
CPU system

CPU user

(b) Avila

Figure 8.3: CPU load in the firewall mode.

between the mobile client and the default gateway in the network. The BEX packets

were filtered by the firewall on the Wi-Fi AR based on HITs. The second peak on the

graphs (the 19th second in Figure 8.3a; the seventh second in Figure 8.3b) accounts

for the SSH key exchange between the mobile client and a remote peer. Finally, the

interval from the 23rd to the 42nd second in Figure 8.3a and from the 10th to the

20th second in Figure 8.3b corresponds to the filtering of the ESP packets by the

firewall. As the figures show, Avila significantly outperforms Fonera in terms of the

time required to complete the whole task, spending in total twice as fewer seconds

as Fonera (20 versus 42 seconds). This result indicates that faster AR hardware is

necessary to provide sufficient performance of filtering operations in a distributed

HIP-based firewall.

Our results on memory utilization in the firewall mode ensure a good level of perfor-

mance on both AR models. We found that although only 1 MB of RAM is available

after the firewall start-up on Fonera, it is sufficient to sustain two-three mobile

clients. With Avila, the situation is better as only 21 MB of the total 128 MB of

RAM are used on the average. Thus, the amount of RAM in the access router does

not make a significant impact on the firewall performance.

8.4.2 Proxy mode

This section presents the results obtained on Fonera and Avila running in the HIP

proxy mode. Figures 8.4a and 8.4b depict the CPU utilization during the bulk

76

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

C
P

U
 L

oa
d

(%
)

Elapsed time (seconds)

CPU load (overall)
CPU system

CPU user

(a) Fonera

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

C
P

U
 L

oa
d

(%
)

Elapsed time (seconds)

CPU load (overall)
CPU system

CPU user

(b) Avila

Figure 8.4: CPU load in the proxy mode.

copy of the same file over SSH as in the previous experiment. Please note that the

plots do not give the CPU load per application but instead for the whole system.

Assuming that other applications are in the idle state, our scenario suggests that

the dynamics of the CPU utilization on the graphs account for the HIP daemon and

the proxy. For both experiments with Fonera and Avila the setup and the size of

the transmitted file were identical.

The difference with previous test is the following. A mobile client in this experiment

is HIP-unaware, hence the proxy on the Wi-Fi AR performs the packet translation.

Prior to the translation the proxy does a HIP base exchange with the default network

gateway. The BEX consumes all available CPU cycles on Fonera for a period of five

seconds (the first peak in Figure 8.4a), while on Avila the same operations result

in less than 40% of the CPU utilization (the first peak in Figure 8.4b). After the

BEX is completed, the HIP proxy on the Wi-Fi AR translates the plain TCP/IP

packets it receives from the mobile client to the ESP packets it sends to the network

gateway. As can be seen from the figures, the whole task is completed on Avila

within 55 seconds. Fonera, on the contrary, due to limited resources spends on this

operation more than 120 seconds.

Since the operations of packet translation require additional work (such as mem-

ory copying, database lookup, encryption operations, etc.), the throughput of the

network is influenced by the amount of the available CPU cycles. We compared

the TCP data throughput of the channel between the mobile client and the cen-

tral network gateway with Avila running in the middle as a firewall and a proxy.

77

The results show that the HIP-aware firewall does not seriously affect the data

rate, but the HIP proxy on Avila reduces the throughput by 8.7 Mbps (from 13.1

to 4.4 Mbps). In general, our measurements show that Avila offers a substantial

increase in throughput in comparison to Fonera.

The memory usage becomes an issue when the HIP daemon is running in the proxy

mode. In contrast to the firewall mode, 1 MB of available RAM on Fonera after

the HIP daemon and proxy have been invoked is not sufficient. Due to absence

of a swapping partition on the OpenWrt platform, the lack of RAM makes Fonera

completely unresponsive with the only option of hard reset to bring it back. In

contrast, the HIP proxy running on Avila with a notably larger amount of RAM can

sustain several connections without problems. Though, when every packet is served

in FIFO manner, per-packet processing time affects the overall system throughput.

8.4.3 Mode selection

The analysis of the measurement results allows us to give the following recommen-

dations on deploying the architecture proposed in this article:

• For the areas with a small rate of connections, it is sufficient to have low cost

devices such as La Fonera FON2100 to authenticate the users using HIT-

based filtering on the distributed firewalls (i.e., running a HIP-aware firewall

only).

• Since running only the HIP firewall does not require much of resources, one

may consider using the existing Wi-Fi access routers but only modifying the

software that is pre-installed on these devices.

• In cases when support for both plain unauthenticated and HIP authenti-

cated traffic is needed (i.e., support for both legacy and HIP clients dur-

ing the network transition state), more powerful devices such as Gateworks

Avila GW2348-4 are required. However, even on powerful Wi-Fi ARs we

recommend replacing a HIP proxy with another technique (e.g., forwarding

packets to a demilitarized zone) to provide compatibility with legacy clients.

8.5 Summary

We have proposed a HIP-based distributed authentication architecture that can of-

fer means to solve security and mobility issues in WLAN networks. The proposed

78

design is a two-level architecture where mobile users employ the Host Identity Pro-

tocol to connect to legacy Internet hosts through an operator’s WLAN. The system

includes an operator-specific proxy server and a distributed firewall running directly

on WLAN ARs. The architecture has been implemented and validated on two

different AR models with a Linux-based OpenWrt distribution.

Performance measurement results of HIP proxy and firewall running on the OpenWrt

WLAN access routers have supported the motivation behind the two-level architec-

ture. The hardware capabilities of the tested WLAN ARs are sufficient to run the

HIP firewall performing a simple verification of the traffic based on the users’ HITs.

This prevents a malicious user from attacking the operator’s internal infrastructure.

Resource-intensive operations, such as serving as a HIP proxy and a target of the

HIP base exchange, are given to a powerful server running in the fixed operator’s

network. The proxy enables a mobile user to benefit from the HIP properties such

as IPsec encryption, mobility and multihoming, and IP cross-family support. The

proposed architecture is planned to be deployed in a city-wide WLAN network in

Northern Finland (panOULU).

9 Discussion

In this chapter we discuss the results of our empirical research. We provide our evalu-

ation of feasibility of running the existing IP-based mobility and security mechanisms

on lightweight hardware and make recommendations on the use of unmodified HIP

on such devices. We conclude the chapter by discussing several prospective research

directions.

9.1 HIP applicability to lightweight devices

In general, the obtained results indicate that the public-key cryptography and

IPsec encryption involved with HIP are computationally expensive operations for

lightweight mobile handhelds and can produce considerable delays to their users.

Such operations can easily stress CPU, memory and battery resources of the devices

such as the Nokia 770 and the Nokia E51 . However, this is a general statement

and in practice the applicability of unmodified HIP to the resource-constrained mo-

bile phones and PDAs should be considered depending on the QoS requirements of

particular applications.

As an example, we conclude that unmodified HIP can be used in scenarios where

a HIP-enabled mobile client communicates with remote Internet hosts through a

single proxy server. In such a case, the establishment of a HIP association using the

1024-bit RSA keys takes 1.4 seconds on the average including two RTT of 2.5 ms

for the Nokia 770 Internet Tablet. Since one HIP base exchange with the proxy

is sufficient for the whole browsing session, most users will probably tolerate this

delay. We make such conclusion based on the Nielsen’s usability book [78], where

the author elaborates on the “0.1/1/10”rule for the interactive applications, studied

earlier by Miller [69] and Card et al. [11]. According to this rule, in 0.1 second

the user should get a feedback showing that her action (e.g., a mouse click) was

received; in 1 second the task should be completed to avoid the interruption of

the user’s work, otherwise an indicator with the task’s completeness status should

appear on the screen; finally, if in 10 seconds the task is not completed, the user

loses her attention and most likely stops the task or switches to another one [78].

Based on this rule and assuming that each mobile application has an indicator (e.g.,

a status bar) for the completeness of a task, a 1.4 seconds-delay introduced by the

HIP base exchange should not seriously decrease the user attention.

Nevertheless, the situation is likely to change when either two lightweight devices

79

80

communicate with each other through HIP or the client does not use proxy and,

thus, needs to establish several associations with remote sites simultaneously. Our

tests show that the time needed to set up a HIP association between two Nokia 770

Internet Tablets is above 2.6 seconds on the average and between two Nokia E51

smartphones varies from 3.5 to 6.4 seconds depending on the phone state (active

or standby). The phone state is called active when its display is switched on and

refreshing. In this state, a HIP base exchange duration representing a delay for the

user is almost twice as long as in the standby state (3.2 versus 1.7 seconds). Because

the user of a mobile phone most probably uses HIP with a GUI application that

turns the phone into the active state, a HIP association establishment will always

produce a three-second delay for the users of smartphones such as the Nokia E51.

The duration of a HIP mobility update on lightweight devices might be another con-

cern if HIP is used with an application or a protocol that requires fast handovers.

An update of a single HIP association between the Nokia 770 Internet Tablet and a

remote peer takes 287 ms on the average with the RTT equal to 3.75 ms. Hence, the

applications requiring the handoffs faster than this cannot efficiently utilize secure

HIP mobility on such class of devices. Otherwise, this will likely cause poor perfor-

mance and negative user experience. In case of a number of running applications and

several open HIP associations, the mobile client will need to perform multiple update

procedures upon changing its network attachment point, thus requiring even shorter

delay per update. For comparison, a HIP mobility update between a 1.6-GHz IBM

laptop and a server takes only 100 ms on the average with RTT equal to 1.6 ms.

It is worth noting that these mobility measurements were performed 2,5 years ago

with a code snapshot available at the time, so today’s numbers might slightly change

with the present implementations. In general, our experiments showed well a ratio

between the handover durations on the lightweight Nokia 770 and a conventional

IBM laptop.

One way to affect the application delay introduced by HIP is to adjust different

parameters such as the length of a public key (RSA or DSA), the Diffie-Hellman

key length and the puzzle difficulty. For instance, for applications that do not require

strong security (e.g., web surfing) the duration of a HIP association establishment

between a Nokia 770 and a server might be reduced to 0.4 seconds by using the

768-bit DH Group in the Diffie-Hellman key exchange and the 1024-bit RSA keys.

Similarly, one might use a 512-bit RSA key instead of a 1024-bit key. However,

reducing the key lengths is rather unfavourable solution because it would result in a

less secure communication context increasing the probability of attacks. Contrary,

one might want to increase the length of the RSA and DH keys in an untrustworthy

81

environment. This in turn will cause even longer delays to exchange four HIP BEX

and three mobility update packets.

Our measurements with different values of the puzzle difficulty showed that reduc-

ing the default value of K = 10 does not significantly decrease processing time of

such a puzzle by the Initiator whereas raising it to K = 15 and above increases the

processing time exponentially on the Nokia 770 Internet Tablet. As an enhance-

ment for parameter adjustments, it would be useful to have a mechanism that can

automatically detect the type of the client hardware prior to communications and

depending on the available resources offer to lightweight peers smaller key lengths

and puzzle difficulty value.

Taking into consideration the CPU utilization perspective our results with a

Symbian-based Nokia E51 indicate a 100% processor load during the intensive HIP

daemon operations such as initial generation of a public-private key pair and estab-

lishment of a HIP association. Otherwise, after the base exchange is completed and

the HIP daemon falls into the standby mode, the CPU utilization is minimal. The

memory usage on the Nokia E51 in our experiments proved to be within normal

bounds during the HIP base exchange raising the total amount of used RAM by

only 3-4 MB on the average.

In another set of the experiments we evaluated the impact of the IPsec ESP data

encryption involved with HIP on RTT and TCP throughput. In general, the RTT

with ESP was slightly higher than over plain IP, except for the first RTT that

triggered a HIP base exchange (that value was over 1 second and we did not include

it in the calculated average). With the initial RTT=2.08 ms, the ESP encryption

increased this value by just 0.67 ms. It would be unfair to generalize these results

because the RTT differs in different networks.

The maximum achievable TCP throughput in our experiments with the Nokia 770

over a wireless link was initially constrained either by improper driver implementa-

tion, low CPU power or another reason. An average value of 4.86 Mbps appeared to

be an upper bound for the Internet Tablet in an encryption-free network. The use

of HIP and ESP further reduced the throughput measured with iperf by 1.59 Mbps.

We also compared ESP with WPA encryption enabled on the wireless access router.

Implemented on hardware WPA expectedly produced tiny impact as compared to

software-based IPsec ESP. The comparison with a 1.6-GHz IBM laptop showed that

HIP affects more seriously devices with low computational power. The experiments

with the Nokia 770 and the laptop were performed in equal or similar conditions.

Hence we assume that the difference in numbers obtained on both devices shows

82

us the pure effect of IPsec ESP encryption. However, we did not control all factors

that could potentially affect the measurements results. For instance, we assumed

that the WLAN signal strength was merely equal on both Nokia tablet and IBM

laptop connected to the same Wi-Fi AR and placed in the same proximity from it.

Yet we did not measure the actual signal strength and cannot provide any numbers.

Similarly, we did not control different TCP options that can affect the throughput.

Ideally, it is necessary to distinguish the effects on the throughput made by the

application, by TCP itself and by the network channel [94]. Due to its complexity,

we leave such analysis out of the thesis’s scope.

Our preliminary results on power consumption indicate that the use of ESP encryp-

tion with HIP does not notably affect the current consumption on the Nokia 770,

although the energy cost per byte is higher with HIP due to reduced throughput. We

noticed that the Tablet’s CPU is always fully utilized when an application transmits

data over WLAN, and this depletes the battery in 3-4 hours. The measurements

of power consumption and evaluation of the HIP effect on the battery lifetime on

Nokia E51 showed 222 mW/60 mA and 333 mW/90 mA for the cases when the

phone was in the ”normal” use (i.e., no HIP daemon was running) and with the HIP

daemon doing a base exchange. The observed values correspond to 18 and 12 hours

of a 1050-mAh battery. In reality, the constant exchange of the HIP control pack-

ets is abnormal behaviour of the HIP daemon, so the purpose of these results is

rather to illustrate an instant power consumption by the cryptography operations

constituting the BEX.

9.2 Future research directions

The existing mobile phones, PDAs, Wi-Fi routers, remote controllers, sensors and

many other embedded appliances in our daily life are increasingly utilizing the

TCP/IP communication stack to interconnect between each other. This tendency

has received its own definition - the ”Internet of Things” [42], which considers any

small object as a potential participant of a physical IP network. Originating from

the early 2000s, the idea of the ”Internet of Things” heavily relies on two important

domains: how to identify objects and detect their changes, and how to connect them.

The first domain is to a large extent based on the RFID and sensor technologies,

whereas the second is attributed to the TCP/IP communication stack.

In this thesis, we addressed selected important security and mobility issues of the

mobile Internet. In particular, we empirically evaluated the applicability of the Host

Identity Protocol to three classes of lightweight devices including a Linux-based

83

PDA, a Symbian-based smartphone and two models of the OpenWrt-based Wi-Fi

access routers. Since these devices are a definite part of the future all-IP networks,

we classify our present work to fall into the communication domain of the ”Internet

of Things”. As a part of the future research, we consider important to further

investigate this emerging concept by focusing on its two domains: identification and

access control for the embedded objects and secure communications between them.

As an example, the applicability of existing IP security mechanisms to the different

types of sensor networks can be evaluated.

Besides communications security in a network composed of sensors or other

lightweight objects, one important perspective for our future considerations is energy

consumption. While in this work we focused on measuring the effect of public-key

cryptography and IPsec encryption on the battery lifetime of different handhelds,

another factor strongly influencing power consumption of such devices is data trans-

mission over a wireless interface. Ideally, a wireless smart object should stay most

of the time in a sleep mode and wake up for only short periods to exchange data

with its peers. A variety of approaches has been proposed to eliminate idle states of

lightweight objects in wireless ad-hoc networks and thus achieve rational utilization

of their energy resources. A substantial contribution in this area, potentially valu-

able to our future research, belongs to Feeney et al.. In their works [20, 21, 22] the

authors studied multiple power save protocols in wireless networks and evaluated

the impact of different node wakeup algorithms on network capacity and energy

efficiency.

One interesting recent initiative in the field of the ”Internet of Things” is the industry

alliance IPSO (IP for Smart Objects) [18]. IPSO’s mission is to encourage different

organisations and parties in the use of the Internet Protocol as the most standardized

and non-proprietary solution for networking of small objects. IPSO’s activities do

not substitute but complement the work performed by the IETF and IEEE forums

by documenting new IP-based technologies intended for embedded objects, making

interoperability tests between different smart devices, applications and services, and

serving as an informative, promotion and marketing entity [18].

As a potential continuation of our present research and a target for future work,

we consider the (wireless) ”Internet of Things” as an environment where different

embedded devices (from a light bulb to a temperature meter) coexist, are inter-

connected and possibly controlled remotely (e.g., by mobile terminals). In such an

“ecosystem”, we must ensure secure and efficient mobile communications between

all lightweight participants. In achieving this goal, we will most likely need to al-

leviate weaknesses identified in this thesis, e.g., the computational expenses of the

84

public-key cryptography and IPsec encryption. The protocols operating in such net-

works should be adaptable to different classes of communicating devices. Further

comparison of our empirical results against related work will provide more insights

into the research target and assist in finding alternative approaches for security on

lightweight mobile devices.

10 Conclusions

In this thesis, we addressed the aspect of secure communications in the mobile Inter-

net. In particular, we considered selected security and mobility issues on lightweight

mobile devices and network components. Our main objectives were to evaluate the

feasibility of running the existing IP-layer security and mobility protocols (such as

HIP and IPsec) on lightweight mobile devices and assess the impact of constrained

hardware resources on performance of the protocols’ operations.

We performed a literature study to obtain the insights into the research target

and evaluated the contribution of the related work. In the empirical part of our

research we conducted a number of experiments involving several mobile clients with

limited CPU, memory and battery resources running the Host Identity Protocol.

We measured a set of different HIP and network-related performance metrics. The

analysis of the results allowed us to make recommendations on using unmodified

public-key cryptography mechanisms on lightweight devices in the mobile Internet.

In addition, we reported our development and porting experience, which can be

useful for migration of OSS projects to an embedded platform.

Our empirical results indicate that unmodified HIP and IPsec are feasible to run

on mobile devices and lightweight network components without a significant per-

formance degradation only in particular cases. That is why the evaluation of HIP

and similar protocols has to distinguish between different scenarios and applications,

taking into account varying QoS requirements.

Our experimentations with two different Wi-Fi access router models showed that the

choice of the AR hardware is dictated by the requirements to the serving capacity

(i.e., the amount of clients) and the underlying network architecture (i.e., which

functions are performed by the Wi-Fi ARs).

One of the important future research direction is to study different IP security

protocols and their adaptability for distinct classes of communicating devices in

the mobile Internet, which can be achieved, e.g., by the use of flexible protocol

parameters. Another approach can be to concentrate on secure communications in

the “Internet of Things” and, in addition to mobile handhelds, consider other smart

objects.

85

86

References

[1] HIPL website. [Online] Available at: http://infrahip.hiit.fi Accessed

23 April 2009.

[2] OpenHIP website. [Online] Available at: http://www.openhip.org Ac-

cessed 23 April 2009.

[3] panOULU network website. [Online] Available at: http://www.panoulu.

net. Accessed 23 April 2009.

[4] Symbian Fast Facts Q2 2008. [Online] Available at: http://www.symbian.

com/about/fast.asp. Accessed 23 April 2009.

[5] J. Abeillé, M. Durvy, J. Hui, and S. Dawson-Haggerty. 2008. Lightweight

IPv6 Stacks for Smart Objects: the Experience of Three Independent and In-

teroperable Implementations. Internet Protocol for Smart Objects (IPSO) Al-

liance. White Paper #2. [Online] Available at http://www.ipso-alliance.

org/Documents/IPSO-WP-2.pdf. Accessed 20 May 2009.

[6] J. Arkko, C. Vogt, and W. Haddad. 2007. Enhanced Route Optimization for

Mobile IPv6. RFC 4866, IETF.

[7] F. Baboescu and G. Varghese. 2005. Scalable packet classification.

IEEE/ACM Trans. Netw. 13, no. 1, pages 2–14.

[8] K. Brasee, S. K. Makki, and S. Zeadally. 2008. A Novel Distributed Au-

thentication Framework for Single Sign-On Services. In: SUTC ’08: Proc.

of the 2008 IEEE International Conference on Sensor Networks, Ubiquitous,

and Trustworthy Computing, pages 52–58. IEEE Computer Society, Wash-

ington, DC, USA. ISBN 978-0-7695-3158-8.

[9] G. Camarillo, I. Mas, and P. Nikander. 2008. A Framework to Combine

the Session Initiation Protocol and the Host Identity Protocol. In: Proc. of

Wireless Communications and Networking Conference, 2008 (WCNC 2008).

IEEE, pages 3051–3056.

[10] A. Campbell, J. Gomez, S. Kim, and C.-Y. Wan. 2002. Comparison of IP

Micromobility Protocols. IEEE Wireless Communications .

87

[11] S. K. Card, G. G. Robertson, and J. D. Mackinlay. 1991. The information vi-

sualizer, an information workspace. In: CHI ’91: Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 181–186. ACM,

New York, NY, USA. ISBN 0-89791-383-3.

[12] Certicom Research. 2000. Standards for Efficient Cryptography. SEC 2: Rec-

ommended Elliptic Curve Domain Parameters. Version 1.0, Certicom Re-

search.

[13] Certicom Research. 2008. Standards for Efficient Cryptography. SEC 1: El-

liptic Curve Cryptography. Working draft. version 1.9, Certicom Research.

[14] J.-S. Coron. 2006. What is cryptography? Security & Privacy, IEEE 4, no. 1,

pages 70–73.

[15] V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert. 2005. Network

Mobility (NEMO) Basic Support Protocol. RFC 3963, IETF.

[16] W. Diffie and M. E. Hellman. 1976. New Directions in Cryptography. IEEE

Transactions on Information Theory IT-22, no. 6, pages 644–654.

[17] A. Dunkels. 2003. Full TCP/IP for 8-bit architectures. In: MobiSys ’03: Pro-

ceedings of the 1st International Conference on Mobile Systems, Applications

and Services, pages 85–98. ACM, New York, NY, USA.

[18] A. Dunkels and J.-P. Vasseur. 2008. IP for Smart Objects. Internet Protocol

for Smart Objects (IPSO) Alliance. White Paper #1. [Online] Available

at www.ipso-alliance.org/Documents/IPSO-WP-1.pdf. Accessed 18 May

2009.

[19] M. Durvy, J. Abeillé, P. Wetterwald, C. O’Flynn, B. Leverett, E. Gnoske,

M. Vidales, G. Mulligan, N. Tsiftes, N. Finne, and A. Dunkels. 2008. Making

Sensor Networks IPv6 Ready. In: Proc. of the Sixth ACM Conference on

Networked Embedded Sensor Systems (ACM SenSys 2008), poster session.

Raleigh, North Carolina, USA.

[20] L. M. Feeney, B. Ahlgren, and P. Gunningberg. 2005. Enabling adaptive

traffic scheduling in asynchronous miltihop wireless networks. In: Proc.

of the Third Swedish National Computer Networking Workshop (SNCNW

2005), page 4. Halmstad, Sweden. http://eprints.sics.se/262/01/

snowcow05enabling.pdf.

88

[21] L. M. Feeney, C. Rohner, and B. Ahlgren. 2007. The impact of wakeup

schedule distribution in synchronous power save protocols on the perfor-

mance of multihop wireless networks. In: Proc. of the IEEE Wireless Com-

munications and Networking Conference (WCNC’07). Hong Kong. http:

//eprints.sics.se/2631/01/wcnc07impact.pdf.

[22] L. M. Feeney, C. Rohner, and B. Ahlgren. 2007. Leveraging a power save

protocol to improve performance in ad hoc networks. SIGMOBILE Mob.

Comput. Commun. Rev. 11, no. 2, pages 51–52.

[23] D. Forsberg. 2007. Secure Distributed AAA with Domain and User Repu-

tation. In: Proc. of IEEE International Symposium on a World of Wireless,

Mobile and Multimedia Networks, 2007. WoWMoM 2007, pages 1–6. IEEE

Computer Society.

[24] Forum Nokia. 2005. Symbian OS: Overview To Network-

ing. [Online] Available at: http://sw.nokia.com/id/

c4536832-3dd0-45af-94be-1c4289cc3003/Symbian_OS_Overview_To_

Networking_v1_0_en.pdf. Accessed 18 May 2009.

[25] Forum Nokia. 2009. Nokia Energy Profiler Quick Start Guide.

[Online] Available: http://www.forum.nokia.com/Resources_and_

Information/Explore/Development_Process_and_User_Experience/

Power_Management/Nokia_Energy_Profiler_Quick_Start.xhtml. Ac-

cessed 18 May 2009.

[26] Forum Nokia. 2009. Open C API Reference. [Online] Available: http:

//library.forum.nokia.com/index.jsp?topic=/S60_5th_Edition_Cpp_

Developers_Library/GUID-FE27AB35-C6FD-4F11-802D-0D5FCFFC2976/

html/mrt/Open_C_API_ReferenceIndexPage.html. Accessed 18 May 2009.

[27] Forum Nokia. 2009. Open C/C++ Documentation. [Online] Avail-

able at: http://www.forum.nokia.com/Resources_and_Information/

Documentation/Open_C_and_C++.xhtml. Accessed 18 May 2009.

[28] R. Good and N. Ventura. 2006. A Multilayered Hybrid Architecture to Sup-

port Vertical Handover Between IEEE802.11 and UMTS. In: IWCMC ’06:

Proceedings of the 2006 international conference on Wireless communications

and mobile computing, pages 257–262. ACM, New York, NY, USA. ISBN

1-59593-306-9.

89

[29] A. Gurtov. 2008. Host Identity Protocol (HIP): Towards the Secure Mobile

Internet. Wiley and Sons. ISBN 978-0-470-99790-1.

[30] H. Hamed and E. Al-Shaer. 2006. Dynamic rule-ordering optimization for

high-speed firewall filtering. In: ASIACCS ’06: Proceedings of the 2006 ACM

Symposium on Information, computer and communications security, pages

332–342. ACM, New York, NY, USA. ISBN 1-59593-272-0.

[31] M. Haque, A.-S. Pathan, and C. S. Hong. 2008. Securing U-Healthcare Sensor

Networks using Public Key Based Scheme. In: Proc. of the 10th International

Conference on Advanced Communication Technology, 2008 (ICACT 2008),

volume 2, pages 1108–1111.

[32] L.-S. He and N. Zhang. 2003. An Asymmetric Authentication Protocol for M-

Commerce Applications. In: ISCC ’03: Proceedings of the Eighth IEEE In-

ternational Symposium on Computers and Communications, page 244. IEEE

Computer Society, Washington, DC, USA. ISBN 0-7695-1961-X.

[33] T. Heer. 2006. LHIP: Lightweight Authentication for the Host Iden-

tity Protocol (HIP). Master’s thesis, University of Tubingen, Protocol-

Engineering&Distributed Systems research group.

[34] T. Heer. 2007. LHIP Lightweight Authentication Extension for HIP: draft-

heer-hip-lhip-00.txt. Work in progress.

[35] T. Heer, S. Götz, E. Weingärtner, and K. Wehrle. 2008. Secure Wi-Fi Shar-

ing at Global Scales. In: Proc. of the 15th International Conference on

Telecommunications (ICT 2008). IEEE, St. Petersburg, Russian Federation.

[36] T. Heer, R. Hummen, M. Komu, S. Götz, and K. Wehrle. 2009. End-host

Authentication and Authorization for Middleboxes based on a Cryptographic

Namespace. In: Proc. of the IEEE International Conference on Communica-

tions 2009 (ICC 2009). IEEE, Dresden, Germany. To appear.

[37] T. Heer, S. Li, and K. Wehrle. 2007. PISA: P2P Wi-Fi Internet Sharing

Architecture. In: Proc. of the 7th International Conference on Peer-to-Peer

Computing. Galway, Ireland.

[38] T. R. Henderson. 2003. Host Mobility for IP Networks: A Comparison. IEEE

Network 17, no. 6, pages 18–26.

90

[39] T. R. Henderson. 2004. CAN SIP USE HIP. In: HIP Workshop, 61st IETF

meeting.

[40] T. R. Henderson, J. M. Ahrenholz, and J. H. Kim. 2003. Experience with

the Host Identity Protocol for Secure Host Mobility and Multihoming. In:

Proc. of the IEEE Wireless Communications and Networking Conference

(WCNC’03).

[41] S. Herborn, L. Haslett, R. Boreli, and A. Seneviratne. 2006. HarMoNy -

HIP Mobile Networks. In: Proc. of the IEEE 63rd Vehicular Technology

Conference (VTC ’06), pages 871–875.

[42] International Telecommunication Union. 2005. ITU Internet Re-

ports 2005: The Internet of Things. Executive Summary. [Online]

Available at: http://www.itu.int/dms_pub/itu-s/opb/pol/S-POL-IR.

IT-2005-SUM-PDF-E.pdf. Accessed 18 May 2009.

[43] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith. 2000. Im-

plementing a Distributed Firewall. In: CCS ’00: Proc. of the 7th ACM Con-

ference on Computer and Communications Security, pages 190–199. ACM,

New York, NY, USA. ISBN 1-58113-203-4.

[44] C. Jian, R. Yan, Z. Hongke, and Z. Sidong. 2005. A proposal to replace

HIP base exchange with IKE-H method: draft-yan-hip-ike-h-02. Work in

progress. Expired in May, 2006.

[45] W. Jiang and V. K. Prasanna. 2009. Large-scale wire-speed packet classifica-

tion on FPGAs. In: FPGA ’09: Proceeding of the ACM/SIGDA international

symposium on Field programmable gate arrays, pages 219–228. ACM, New

York, NY, USA. ISBN 978-1-60558-410-2.

[46] D. B. Johnson, C. Perkins, and J. Arkko. 2004. Mobility Support in IPv6.

RFC 3775, IETF.

[47] P. Jokela, R. Moskowitz, and P. Nikander. 2008. Using the Encapsulating

Security Payload (ESP) Transport Format with the Host Identity Protocol

(HIP). IETF RFC 5202. URL http://tools.ietf.org/html/rfc5202.

[48] P. Jokela, T. Rinta-Aho, T. Jokikyyny, J. Wall, M. Kuparinen, H. Mahkonen,

J. Melen, T. Kauppinen, and J. Korhonen. 2004. Handover Performance with

HIP and MIPv6. In: Proc. of the 1st International Symposium on Wireless

Communication Systems, ISWCS’04.

91

[49] J.-W. Jung, H.-K. Kahng, R. Mudumbai, and D. Montgomery. 2003. Per-

formance Evaluation of Two Layered Mobility Management Using Mobile

IP and Session Initiation Protocol. In: Proc. of Global Telecommunications

Conference. GLOBECOM ’03, volume 3, pages 1190–1194.

[50] C. Kaufman. 2005. Internet Key Exchange (IKEv2) Protocol. RFC 4306,

IETF.

[51] S. Kent and R. Atkinson. 1998. IP Authentication Header. RFC 2402 (Pro-

posed Standard). URL http://www.ietf.org/rfc/rfc2402.txt. Obsoleted

by RFC 4302.

[52] S. Kent and R. Atkinson. 1998. IP Encapsulating Security Payload (ESP).

RFC 2406, IETF.

[53] A. Khurri, D. Kuptsov, and A. Gurtov. 2009. Performance of Host Identity

Protocol on Symbian OS. In: Proc. of the IEEE International Conference on

Communications 2009 (ICC’09). IEEE.

[54] A. Khurri, E. Vorobyeva, and A. Gurtov. 2007. Performance of Host Iden-

tity Protocol on Lightweight Hardware. In: Proc. of the 2nd ACM/IEEE

International Workshop on Mobility in the Evolving Internet Architecture

(MobiArch’07). ACM, New York, NY, USA. ISBN 978-1-59593-784-8.

[55] N. Koblitz. 1987. Elliptic Curve Cryptosystems. Mathematics of Computa-

tion, 1987 48, no. 177, pages 203–209.

[56] N. Koblitz, A. Menezes, and S. Vanstone. 2000. The State of Elliptic Curve

Cryptography. Designs, Codes and Cryptography 19, no. 2-3, pages 173–193.

[57] T. Koponen, A. Gurtov, and P. Nikander. 2005. Application mobility with

Host Identity Protocol. In: Proc. of NDSS Wireless and Security Workshop.

Internet Society, San Diego, CA, USA.

[58] J. Korhonen, A. Mäkela, and T. Rinta-aho. 2007. HIP Based Network Access

Protocol in Operator Network Deployments. In: Proc. of the First Ambi-

ent Networks Workshop on Mobility, Multiaccess, and Network Management

(M2NM’07).

[59] J. Korhonen. 2008. IP Mobility in Wireless Operator Networks. Ph.D. thesis,

University of Helsinki, Department of Computer Science, P.O. Box 68, FIN-

00014 University of Helsinki, Finland.

92

[60] D. Kuptsov and A. Gurtov. 2009. SAVAH: Source Address Validation with

Host Identity Protocol. In: Proc. of the First International ICST Conference

on Security and Privacy in Mobile Information and Communication Systems

(MobiSec’09).

[61] D. Kuptsov, A. Khurri, and A. Gurtov. 2009. Distributed User Authentica-

tion in Wireless LANs. In: Proc. of the 10th IEEE International Symposium

on a World of Wireless, Mobile and Multimedia Networks (WoWMoM’09).

IEEE.

[62] J. Laganier and L. Eggert. 2008. Host Identity Protocol (HIP) Rendezvous

Extension. IETF RFC 5204. URL http://tools.ietf.org/html/rfc5204.

[63] J. Laganier, T. Koponen, and L. Eggert. 2008. Host Identity Protocol (HIP)

Registration Extension. IETF RFC 5203. URL http://tools.ietf.org/

html/rfc5203.

[64] H. Lee, S. W. Lee, and D. Cho. 2003. Mobility management based on the

integration of mobile IP and session initiation protocol in next generation

mobile data networks. In: Proceedings of IEEE 58th Vehicular Technology

Conference VTC 2003Fall, volume 3, pages 2058–2062.

[65] J. Lim, M. Han, and J. Kim. 2005. Implementation of light-weight IKE pro-

tocol for IPsec VPN within router. In: Proc. of the 7th International Con-

ference on Advanced Communication Technology (ICACT 2005), volume 1,

pages 81–84.

[66] K. Malhotra, S. Gardner, and R. Patz. 2007. Implementation of Elliptic-

Curve Cryptography on Mobile Healthcare Devices. In: Proc. of the IEEE

International Conference on Networking, Sensing and Control, 2007, pages

239–244.

[67] J. Manner and M. Kojo. 2004. Mobility Related Terminology. RFC 3753,

IETF.

[68] D. L. McDonald, C. W. Metz, and B. G. Phan. 2005. PF KEY Key Man-

agement API, Version 2: draft-mcdonald-pf-key-v2-05. Work in progress.

[69] R. B. Miller. 1968. Response time in man-computer conversational transac-

tions. In: AFIPS ’68 (Fall, part I): Proceedings of the December 9-11, 1968,

fall joint computer conference, part I, pages 267–277. ACM, New York, NY,

USA.

93

[70] V. S. Miller. 1986. Use of Elliptic Curves in Cryptography. In: Lecture

notes in computer sciences; 218 on Advances in cryptology—CRYPTO 85,

pages 417–426. Springer-Verlag New York, Inc., New York, NY, USA. ISBN

0-387-16463-4.

[71] R. Moskowitz and P. Nikander. 2006. Host Identity Protocol Architecture.

IETF RFC 4423. URL http://www.ietf.org/rfc/rfc4423.txt.

[72] R. Moskowitz, P. Nikander, P. Jokela, and T. R. Henderson. 2007. Host

Identity Protocol: draft-ietf-hip-base-10. Work in progress. Expires in May,

2008.

[73] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. 2008. Experimental

Host Identity Protocol (HIP). IETF RFC 5201.

[74] National Institute of Standards and Technology. 1999. FIPS PUB 46-3: Data

Encryption Standard (DES). pub-NIST. [Online]. Available at http://csrc.

nist.gov/publications/fips/fips46-3/fips46-3.pdf. Accessed 18 May

2009.

[75] National Institute of Standards and Technology. 2000. FIPS PUB 186-2:

Digital Signature Standard (DSS). pub-NIST, pub-NIST:adr. [Online].

Available at http://csrc.nist.gov/publications/fips/fips186-2/

fips186-2-change1.pdf. Accessed 18 May 2009.

[76] National Institute of Standards and Technology. 2001. FIPS PUB 197,

Advanced Encryption Standard (AES). pub-NIST. [Online]. Available at

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. Ac-

cessed 18 May 2009.

[77] National Security Agency. 2009. The Case for Elliptic Curve Cryptog-

raphy. [Online]. Available at: http://www.nsa.gov/business/programs/

elliptic_curve.shtml. Accessed 18 May 2009.

[78] J. Nielsen. 1993. Usability Engineering. AP Professional. ISBN 0-12-518405-

0.

[79] P. Nikander, T. Henderson, C. Vogt, and J. Arkko. 2008. End-Host Mobility

and Multihoming with the Host Identity Protocol (HIP). IETF RFC 5206.

URL http://tools.ietf.org/html/rfc5206.

94

[80] P. Nikander and J. Laganier. 2008. Host Identity Protocol (HIP) Domain

Name System (DNS) Extension. IETF RFC 5205. URL http://tools.

ietf.org/html/rfc5205.

[81] P. Nikander and J. Melen. 2008. A Bound End-to-End Tunnel (BEET) mode

for ESP: draft-nikander-esp-beet-mode-09. URL http://tools.ietf.org/

html/draft-nikander-esp-beet-mode-09. Work in progress.

[82] P. Nikander, J. Ylitalo, and J. Wall. 2003. Integrating Security, Mobility,

and Multi-Homing in a HIP Way. In: Proc. of Network and Distributed

Systems Security Symposium (NDSS’03). Internet Society, San Diego, CA,

USA. ISBN 1-891562-16-9.

[83] E. Nordmark and M. Bagnulo. 2009. Shim6: Level 3 Multihoming Shim

Protocol for IPv6. Internet-Draft (work in progress) 12, IETF. URL http:

//tools.ietf.org/html/draft-ietf-shim6-proto-12.

[84] S. Novaczki, L. Bokor, and S. Imre. 2006. Micromobility Support in HIP:

Survey and Extension of Host Identity Protocol. In: Proc. of the IEEE

Mediterranean Electrotechnical Conference (MELECON 2006), pages 651–

654.

[85] S. Novaczki, L. Bokor, and S. Imre. 2007. A HIP Based Network Mobility

Protocol. In: Proc. of the International Symposium on Applications and the

Internet Workshops, 2007. SAINT Workshops 2007, pages 48–48.

[86] P. Eronen. 2006. IKEv2 Mobility and Multihoming Protocol (MOBIKE).

RFC 4555 (Proposed Standard). URL http://tools.ietf.org/html/

rfc4555.

[87] P. Pääkkönen, P. Salmela, R. Aguero, and J. Choque. 2008. Performance

Analysis of HIP-based Mobility and Triggering. In: Proc. of the Interna-

tional Symposium on a World of Wireless, Mobile and Multimedia Networks

(WoWMoM’08).

[88] C. Perkins. 2002. IP Mobility Support for IPv4. RFC 3334, IETF. URL

http://tools.ietf.org/html/rfc3344.

[89] R. L. Rivest, A. Shamir, and L. M. Adelman. 1977. A Method for Ob-

taining Digital Signatures and Public-Key Cryptosystems. Technical Report

MIT/LCS/TM-82. URL citeseer.ist.psu.edu/rivest78method.html.

95

[90] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, and E. Schooler. 2002. SIP: Session Initiation Protocol. RFC

3261, IETF.

[91] B. Schneier. 1993. Description of a New Variable-Length Key, 64-Bit Block

Cipher (Blowfish). Fast Software Encryption, Cambridge Security Workshop

Proceedings pages 191–204.

[92] H. Schulzrinne and E. Wedlund. 2000. Application-layer mobility using SIP.

SIGMOBILE Mobile Computing and Communications Review 4, no. 3, pages

47–57.

[93] C. Shannon. 1949. Communication Theory and Secrecy Systems. Bell Tele-

phone Laboratories.

[94] M. Siekkinen, G. Urvoy-Keller, E. W. Biersack, and D. Collange. 2008. A root

cause analysis toolkit for TCP. Comput. Netw. 52, no. 9, pages 1846–1858.

[95] J. Y. H. So, J. Wang, and D. Jones. 2005. SHIP - Mobility Manage-

ment Hybrid SIP-HIP Scheme. In: Proc. of the 6th International Confer-

ence on Software Engineering, Artificial Intelligence, Networking and Paral-

lel/Distributed Computing and First ACIS International Workshop on Self-

Assembling Wireless Networks (SNPD/SAWN’05), pages 226–230.

[96] J. So and J. Wang. 2008. Micro-HIP A HIP-Based Micro-Mobility Solu-

tion. In: Proc. of the IEEE International Conference on Communications

Workshops, 2008. ICC Workshops’08, pages 430–435.

[97] H. Soliman, C. Catelluccia, K. E. Malki, and L. Bellier. 2004. Hierarchical

Mobile IPv6 mobility management (HMIPv6): draft-ietf-mipshop-hmipv6-

04. Internet draft, IETF. Work in progress. Expires in June 2005.

[98] R. Stepanek. 2001. Distributed Firewalls. In: Publications in Telecommuni-

cation Software and Multimedia. Helsinki University of Technology. [Online].

Available at http://www.tml.tkk.fi/Studies/T-110.501/2001/papers/

robert.stepanek.pdf. Accessed 18 May 2009.

[99] L. Thames, R. Abler, and D. Keeling. 2009. Bit vector algorithms enabling

high-speed and memory-efficient firewall blacklisting. In: ACM-SE 47: Pro-

ceedings of the 47th Annual Southeast Regional Conference, pages 1–6. ACM,

New York, NY, USA. ISBN 978-1-60558-421-8.

96

[100] H. Wang, B. Sheng, C. C. Tan, and Q. Li. 2008. Comparing Symmetric-key

and Public-key Based Security Schemes in Sensor Networks: A Case Study

of User Access Control. In: ICDCS ’08: Proceedings of the 2008 The 28th

International Conference on Distributed Computing Systems, pages 11–18.

IEEE Computer Society, Washington, DC, USA. ISBN 978-0-7695-3172-4.

[101] Q. Wang and M. Abu-Rgheff. 2006. Mobility management architectures based

on joint mobile IP and SIP protocols. IEEE Wireless Communications 13,

no. 6, pages 68–76.

[102] K. D. Wong, A. Dutta, J. Burns, R. Jain, and K. Young. 2003. A Multilayered

Mobility Management Scheme for Auto-Configured Wireless IP Networks.

IEEE Wireless Communications 10, no. 5, pages 62–69.

[103] J. Wu, G. Ren, J. Bi, X. Li, R. Bonica, and M. Williams. 2007. Source Ad-

dress Validation Architecture (SAVA) Framework: draft-wu-sava-framework-

00.txt. Work in progress.

[104] J. Wu, G. Ren, J. Bi, X. Li, and M. Williams. 2007. A First-Hop Source

Address Validation Solution for SAVA: draft-wu-sava-solution-firsthop-eap-

00. Work in progress.

[105] J. Wu, G. Ren, and X. Li. 2007. Source Address Validation: Architecture

and Protocol Design. In: Proc. of the IEEE International Conference on

Network Protocols, pages 276–283.

[106] J. Ylitalo. 2005. Re-thinking Security in Network Mobility. In: Proc. of NDSS

Wireless and Security Workshop. Internet Society, San Diego, CA, USA.

[107] J. Ylitalo. 2008. Secure Mobility at Multiple Granularity Levels over Heter-

geneous Datacom Networks. Ph.D. thesis, Helsinki University of Technology,

Department of Computer Science and Engineering, P.O. Box 5400, FI-02015

TKK, Finland.

[108] J. Ylitalo, J. Melen, P. Nikander, and V. Torvinen. 2004. Re-thinking Secu-

rity in IP based Micro-Mobility. In: Proc. of the 7th Information Security

Conference (ISC04).

